ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: This study is based on the NCAR King Air aircraft and radiosonde observations on 31 October 1986 during the FIRE in Wisconsin over Oshkosh. Aircraft step-up and spiral descent flights are used to obtain kinematic and thermodynamic data. In the step-up maneuver, six different penetrations were made between 1528 and 1616 UTC. Each penetration was about 30 km long separated in the vertical by about 300 m. The time difference between the two spiral soundings was about 43 min. The aircraft descended at a rate of 1.5 m/s during these spiral soundings. Kinematic, cloud physical, and radiometric observations from various instruments are used to estimate the different terms in the moisture- and heat-budget equations. The results show that the advection terms, estimated using the mean longitudinal wind and vertical velocities, and radiative fluxes are important in forming budgets for the cirrus layers. Ice-crystal growth is significant in the upper layers. The maintenance of cirrus can be attributed to relatively warm and moist air advection, radiative cooling at upper levels, and moisture advection in the vertical. Turbulent heat and moisture fluxes are found to be significant in the low levels of cirrus.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Royal Meteorological Society, Quarterly Journal (ISSN 0035-9009); 119; 513,; p. 957-974.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: In this paper the influences of recent technology developments in the areas of lasers, detectors, andoptical filters of a differential absorption lidar (DIAL) system on the measurenent of tropospheric water vapor (H2O) profiles are discussed. The lidar parameters selected are based upon a diode-seeded Ti:sapphire laser that is locked to an H2O line in the 820- or 930-nm band of H2O. To assess the influence of the mode of deployment on the measurement of tropospheric H2O, DIAL performance is evaluated for operation from a medium-altitude (12 km) aircraft, the ground, and space-based systems. It is found that incorporation of these developments could greatly enhance DIAL measurement capability.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 11; 1, pt; p. 76-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Increasing knowledge of cirrus cloud properties can contribute to general circulation model development and ultimately to a better understanding of climate. The objective was to gain a better understanding of cirrus cloud characteristics. Observations from different sensors during the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) which took place in Wisconsin over Oshkosh together with pertinent calculations are used to understand the dynamical, microphysical, and radiative characteristics of these clouds.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA, Langley Research Center, FIRE Science Results 1989; p 333-337
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-25
    Description: As part of the Pacific Exploratory Mission-West Campaign that took place during 16 Sep. - 21 Oct. 1991, lidar measurements were made from the ARC DC-8 aircraft at an altitude of approximately 9 km. This mission provided a unique opportunity to make cirrus cloud observations around the Pacific region covering the latitude range from 5 to 55 deg N and the longitude range from -114 to 120 deg E. Cirrus clouds were observed on most of these flights providing a unique data base. The latitudinal coverage of cirrus observations was further extended to -5 deg S from observations on 30 Jan. 1992 as part of the Airborne Arctic Stratospheric Expedition 2. During this latter mission, aerosol depolarizations at 622 and 1064 nm were also measured. The optical characteristics and statistics related to these cirrus cloud observations are summarized.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Sixteenth International Laser Radar Conference, Part 1; p 365-368
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: 16th International Laser Radar Conference, Part 2; p 679-682
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: A large and comprehensive data set taken by the NOAA CO2 Doppler lidar, the NCAR King Air, and rawinsondes on 31 October 1986 during the FIRE (First ISCCP Regional Experiment) field program which took place in Wisconsin are presented. Vertical velocities are determined from the Doppler lidar data, and are compared with velocities derived from the aircraft microphysical data. The data are used for discussion of particle growth and dynamical processes operative within the cloud.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA, Langley Research Center, FIRE Science Results 1988; p 67-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Techniques are presented to obtain vertical velocity in cirrus clouds from in situ aircraft lateral wind measurements and from ground-based remote Doppler lidar measurements. The approach used is to calculate w from the integral of the divergence of the horizontal velocity around a closed path. Divergence measurements from both aircraft and Doppler lidar are discussed. The principal errors in the calculation of w from aircraft lateral wind measurements are bias in the lateral wind, ground speed errors, and error due to vertical shear of the horizontal wind. For Doppler lidar measurements the principal errors are in the estimate of mean terminal velocity and the zeroth order coefficients of the Fourier series that is fitted to the data. The technique is applied to a cirrus cloud investigated during the FIRE (First International Satellite Cloud Climatology Regional Experiment) Cirrus Intensive Field Observation Program. The results indicate that the error in w is about + or - 14 cm/s from the aircraft technique; this can be reduced to about + or - 2 to 3 cm/s with technical improvements in both ground speed and lateral velocity measurements. The error in w from Doppler lidar measurements, which is about + or - 8 cm/s, can be reduced to about + or - 5 cm/s by improvements in the Doppler velocity measurements with technology that is currently available.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 7; 58-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Applied Optics (ISSN 0003-6935); 30; 1517-152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...