ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • METEOROLOGY AND CLIMATOLOGY  (3)
Collection
Keywords
Years
  • 1
    Publication Date: 2011-08-24
    Description: The deployment of a space-based Doppler lidar would provide information that is fundamental to advancing the understanding and prediction of weather and climate. This paper reviews the concepts of wind measurement by Doppler lidar, highlights the results of some observing system simulation experiments with lidar winds, and discusses the important advances in earth system science anticipated with lidar winds. Observing system simulation experiments, conducted using two different general circulation models, have shown (1) that there is a significant improvement in the forecast accuracy over the Southern Hemisphere and tropical oceans resulting from the assimilation of simulated satellite wind data, and (2) that wind data are significantly more effective than temperature or moisture data in controlling analysis error. Because accurate wind observations are currently almost entirely unavailable for the vast majority of tropical cyclones worldwide, lidar winds have the potential to substan- tially improve tropical cyclone forecasts. Similarly, to improve water vapor flux divergence calculations, a direct measure of the ageostrophic wind is needed since the present level of uncer- tainty cannot be reduced with better temperature and moisture soundings alone.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 869-888
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: This study will involve two objectives: (1) to develop, through computer simulations, optimal satellite-based sensor scanning techniques for direct measurement of tropospheric winds on the meso- and synoptic scales; and (2) to construct simulations of remotely measured wind fields for assessing impact of such fields on the diagnosis and prognosis of atmospheric phenomena through the use of Observing System Simulation Experiments (OSSE). Using the LAWS Simulation Model (LSM), various global coverage scenarios have been investigated as part of an effort to define the optimal orbit, configuration and sampling strategies for observations of winds for use in global circulation models. Simulated data sets have been provided to GSFC, FSU and several LAWS team members. Particular emphasis has been on providing realistic cloud cover, cirrus backscatter, aerosol distribution and wind variance on scales less than 600 km. Progress is currently being made to incorporate other remote sensors (AIRS/AMSU, STIKSCAT) into the global OSSEs.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA(MSFC FY92 Earth Science and Applications Program Research Review; p 117-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The related activities of the contract are outlined for the first year. These include: (1) attend team member meetings; (2) support EOS Project with science related activities; (3) prepare and Execution Phase plan; and (4) support LAWS and EOSDIS related work. Attached to the report is an appendix, 'LAWS Algorithm Development and Evaluation Laboratory (LADEL)'. Also attached is a copy of a proposal to the NASA EOS for 'LAWS Sampling Strategies and Wind Computation Algorithms -- Storm-Top Divergence Studies. Volume I: Investigation and Technical Plan, Data Plan, Computer Facilities Plan, Management Plan.'
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-193445 , NAS 1.26:193445
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...