ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The paper describes a six-station digital-barometer network centered on the Flatland ST radar to support observational studies of gravity waves and other mesoscale features at the Flatland Atmospheric Observatory in central Illinois. The network's current mode of operation is examined, and a preliminary example of an apparent group of waves evident throughout the network as well as throughout the troposphere is presented. Preliminary results demonstrate the capabilities of the current operational system to study wave convection, wave-front, and other coherent mesoscale interactions and processes throughout the troposphere. Unfiltered traces for the pressure and horizontal zonal wind, for days 351 to 353 UT, 1990, are illustrated.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: In: International Conference on Radar Meteorology, 25th, Paris, France, June 24-28, 1991, Preprints (A93-37626 15-47); p. 292-295.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: An analysis is presented of a series of severe storms which occurred in the north central United States on 9 May 1979 and whose spatial distribution and movement correlate well with observed gravity waves. Two gravity wave trains of 2.1-3 mb amplitude, 2.5-3.3 h period and 240-265 km horizontal wavelength were isolated through power spectra analysis and cross-correlation techniques applied to National Weather Service barograph traces. The wave trains propagated in the 200 deg direction, which coincided with the jet axis, with a phase velocity of 20-30 m/s and within a 300 km wide band. The storms were identified on enhanced infrared GOES satellite pictures with the help of radar summaries. These convective systems initially developed in Nebraska and propagated north-northeast at 25 m/s, revealing wave-like characteristics with a separation of 300-400 km. The convective systems were closely linked to the observed wave trains with cell intensity, height and associated rainfall maximized at the wave ridge. One of the two wave trains developed in regions of weak or no convection and appeared to initiate more intense convective clusters downstream from the point of origin. It is shown that the characteristics of the wave trains are consistent with those of gravity waves generated in a region of strong vertical shear associated with the jet. It is suggested that the wave trains continue to extract energy from the basic state all along their track through critical level interaction.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 40; 2804-283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Gravity waves and other coherent disturbances observed at the Boulder Atmospheric Observatory (BAO) during the period between mid-March and mid-April 1984 were studied using data collected by an array of microbarographs located around the 300-m meteorological tower, together with data from the tower. Five passbands were considered in the period range 1-20 min; it was found that, for most of the time, the atmospheric state at these passbands displayed highly coherent structure. For disturbances of up to 5-min periods, a relationship was found between the turbulent kinetic energy measured on the tower and the amplitude of the rms pressure field at the ground, but, for longer periods, no such relationship was found.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 46; 303-329
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: A summary of the results of a detailed study of the vertical structure of mesoscale gravity waves conducted during the Cooperative Convective Precipitation Experiment (CCOPE) is presented. Pressure perturbation fields derived from the Doppler wind fields are compared with the vertical structure of eigenfunctions resulting from a solution to the Taylor-Goldstein linear wave equation for an atmosphere whose mean state is described by vertical profiles obtained from a representative CCOPE sounding. An analysis of the potential for shear instability is also performed on all of the soundings taken on this day to assess the representativeness of the one chosen for the linear theoretical analysis.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 121; 9; p. 2483-2510.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The dynamics of gravity-wave/convective-cell interaction is studied using NOAA data collected in NE Colorado during July and August 1983. The pressure fields measured with microbarographs, the tropospheric wind profiles obtained with a UHF wind profiler radar, and precipitation data collected with a 10-cm weather radar for four events (A, B, C, and D) are analyzed. The four disturbances are detected through a substantial depth of the troposphere. It is observed that in event A the wave and convective cells appear to be locked together; in event B, the wave and convective cells commence about the same time, but the wave velocities differ from the cell velocities; and in events C and D, the waves move faster than the maximum wind in the jet and faster than the convective cells. It is suggested that events A and B are generated by wind shear in the jet stream, and the excitation of events C and D depends on mechanisms such as vertical convective motion and acceleration in the jet flow.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 44; 1534-155
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: New data obtained at the Boulder Atmospheric Observatory are analyzed to obtain separation of wave, turbulence, and mean field necessary for a complete treatment of wave-turbulence interaction. The data were compared with a linear stability analysis of the background atmospheric state, showing good agreement between measured wave parameters (such as wavelength, period, and vector phase velocity) and the eigenvalues of the linear solution. The analysis of the budgets of wave heat flux and temperature variance revealed the essential role of wave-turbulence interaction in maintaining a large amplitude temperature wave and countergradient heat flux. A mechanism for the maintenance of turbulence by waves in strongly stratified boundary layers is described, which emphasizes that the time-mean Richardson number is an irrelevant parameter at such times.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 50; 13; p. 1841-1864.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...