ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • Inorganic, Organic and Physical Chemistry  (1)
  • METALLIC MATERIALS  (1)
  • 1
    Publication Date: 2019-06-28
    Description: A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.
    Keywords: METALLIC MATERIALS
    Type: NASA-CR-185174 , DOE/NASA/0282-1 , NAS 1.26:185174 , R89-917447-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Carbon was utilized as reactive element to modify the microstructure using forced mixing during crystallization of the Al-Si alloy by rotation and stirring. We nucleated the material on SiC substrates while the Al-Si melt was rotated with a speed of 30rpm in a graphite crucible. Several experiments were performed and parameters such as time of mixing, soaking temperature, rotation rate of the substrate and rate of cooling during the solidification was changed. We observed dendrite and cell morphologies during the solidification of rotating melt. The microstructure was characterized by optical microscopy and SEM-EDX and compositional spectroscopy. The effect of carbon impurities was studied on the solidifying microstructure. When we used the longer soak time of the melt in presence of carbon impurities we observed the destruction of dendritic morphology and the formation of cellular and colony structures. Similar approach has been used for Ga2O3, a novel large bandgap material also.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: M18-6926 , Materials Science & Technology (MS&T) 2018; Oct 14, 2018 - Oct 18, 2018; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...