ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(19), (2021): e2021GL094364, https://doi.org/10.1029/2021GL094364.
    Description: The warm Gulf Stream sea surface temperatures strongly impact the evolution of winter clouds behind atmospheric cold fronts. Such cloud evolution remains challenging to model. The Gulf Stream is too wide within the ERA5 and MERRA2 reanalyses, affecting the turbulent surface fluxes. Known problems within the ERA5 boundary layer (too-dry and too-cool with too strong westerlies), ascertained primarily from ACTIVATE 2020 campaign aircraft dropsondes and secondarily from older buoy measurements, reinforce surface flux biases. In contrast, MERRA2 winter surface winds and air-sea temperature/humidity differences are slightly too weak, producing surface fluxes that are too low. Reanalyses boundary layer heights in the strongly forced winter cold-air-outbreak regime are realistic, whereas late-summer quiescent stable boundary layers are too shallow. Nevertheless, the reanalysis biases are small, and reanalyses adequately support their use for initializing higher-resolution cloud process modeling studies of cold-air outbreaks.
    Description: This work was supported by NASA grant 80NSSC19K0390 to ACTIVATE, a NASA Earth Venture Suborbital-3 (EVS-3) investigation funded by NASA's Earth Science Division and managed through the Earth System Science Pathfinder Program Office. The Pacific Northwest National Laboratory (PNNL) is operated for the US Department of Energy (DOE) by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
    Description: 2022-03-08
    Keywords: Cold-air outbreaks ; Surface fluxes ; Gulf Stream ; ACTIVATE ; ERA5 ; MERRA2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: In-situ observations of tropospheric HO(x) (OH and HO2) obtained during four NASA airborne campaigns (SUCCESS, SONEX, PEM-Tropics B and TRACE-P) are reevaluated using the NASA Langley time-dependent photochemical box model. Special attention is given to previously diagnosed discrepancies between observed and predicted HO2 which increase with higher NO(x) levels and at high solar zenith angles. This analysis shows that much of the model discrepancy at high NO(x) during SUCCESS can be attributed to modeling observations at time-scales too long to capture the nonlinearity of HO(x) chemistry under highly variable conditions for NO(x). Discrepancies at high NO(x) during SONEX can be moderated to a large extent by complete use of all available precursor observations. Differences in kinetic rate coefficients and photolysis frequencies available for previous studies versus current recommendations also explain some of the disparity. Each of these causes is shown to exert greater influence with increasing NO(x) due to both the chemical nonlinearity between HO(x) and NO(x) and the increased sensitivity of HO(x) to changes in sources at high NO(x). In contrast, discrepancies at high solar zenith angles will persist until an adequate nighttime source of HO(x) can be identified. It is important to note that this analysis falls short of fully eliminating the issue of discrepancies between observed and predicted HO(x) for high NO(x) environments. These discrepancies are not resolved with the above causes in other data sets from ground-based field studies. Nevertheless, these results highlight important considerations in the application of box models to observationally based predictions of HO(x) radicals.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...