ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lupinus  (1)
  • Penicillium chrysogenum  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Acid phosphatase ; Lupinus ; Organic acids ; Phosphorus (deficiency ; uptake) ; Root exudates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Release of large amounts of citric acid from specialized root clusters (proteoid roots) of phosphorus (P)-deficient white lupin (Lupinus albus L.) is an efficient strategy for chemical mobilization of sparingly available P sources in the rhizosphere. The present study demonstrates that increased accumulation and exudation of citric acid and a concomitant release of protons were predominantly restricted to mature root clusters in the later stages of P deficiency. Inhibition of citrate exudation by exogenous application of anion-channel blockers such as ethacrynic- and anthracene-9-carboxylic acids may indicate involvement of an anion channel. Phosphorus-deficiency-induced accumulation and subsequent exudation of citric acid seem to be a consequence of both increased biosynthesis and reduced metabolization of citric acid in the proteoid root tissue, indicated by increased in-vitro activity and enzyme protein levels of phosphoenolpyruvate carboxylase (EC 4.1.1.31), and reduced activity of aconitase (EC 4.2.1.3) and root respiration. Similar to citric acid, acid phosphatase, which is secreted by roots and involved in the mobilization of the organic soil P fraction, was released predominantly from proteoid roots of P-deficient plants. Also 33Pi uptake per unit root fresh-weight was increased by approximately 50% in juvenile and mature proteoid root clusters compared to apical segments of non-proteoid roots. Kinetic studies revealed a K m of 30.7 μM for Pi uptake of non-proteoid root apices in P-sufficient plants, versus K m values of 8.5–8.6 μM for non-proteoid and juvenile proteoid roots under P-deficient conditions, suggesting the induction of a high-affinity Pi-uptake system. Obviously, P-deficiency-induced adaptations of white lupin, involved in P acquisition and mobilization of sparingly available P sources, are predominantly confined to proteoid roots, and moreover to distinct stages during proteoid root development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8773
    Keywords: iron ; siderophores ; coprogen ; plant nutrition ; Penicillium chrysogenum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Cucumber, as a strategy I plant, and Maize as a strategy II plant, were cultivated in hydroponic culture in the presence of a ferrated siderophore mixture (1 μM) from a culture of Penicillium chrysogenumisolated from soil. The siderophore mixture significantly improved the iron status of these plants as measured by chlorophyll concentration to the same degree as a 100-fold higher FeEDTA supply. Analysis of the siderophore mixture from P. chrysogenum by HPLC and electrospray mass spectrometry revealed that besides the trihydroxamates, coprogen and ferricrocin, large amounts of dimerum acid and fusarinines were present which represent precursor siderophores or breakdown products of coprogen. In order to prove the iron donor properties of dimerum acid and fusarinines for plants, purified coprogen was hydrolyzed with ammonia and the hydrolysis products consisting of dimerum acid and fusarinine were used for iron uptake by cucumber and maize. In short term experiments radioactive iron uptake and translocation rates were determined using ferrioxamine B, coprogen and hydrolysis products of coprogen. While the trihydroxamates revealed negligible or intermediate iron uptake rates by both plant species, the fungal siderophore mixture and the ammoniacal hydrolysis products of coprogen showed high iron uptake, suggesting that dimerum acid and fusarinines are very efficient iron sources for plants. Iron reduction assays using cucumber roots or ascorbic acid also showed that iron bound to hydrolysis products of coprogen was more easily reduced compared to iron bound to trihydroxamates. Ligand exchange studies with epi-hydroxymugineic acid and EDTA showed that iron was easily exchanged between coprogen hydrolysis products and phytosiderophores or EDTA. The results indicate that coprogen hydrolysis products are an excellent source for Fe nutrition of plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...