ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: The recent discovery of vast quantities of near-subsurface ice in both polar regions of Mars by the Mars Odyssey Gamma Ray Spectrometer (GRS) has presented us with an interesting quandary. On one hand, these deposits, found poleward of 60 deg in both hemispheres, are consistent with thermal models suggesting ice will be best protected in these regions during periods of high obliquity. On the other hand, the current paradigm regarding the placement of these deposits, i.e., diffusive deposition of water vapor, appears to be inconsistent with the large volume mixing ratios (approx. 90%) inferred from the GRS data. This incongruity argues that diffusion alone cannot be the primary mechanism for the creation of these reservoirs, and that an alternate, large-scale process should be considered.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: Much of the interest in the polar regions centers on the fact that they likely contain the best record of Martian climate change on time scales from years to eons. This expectation is based upon the observed occurrence of weathering product deposits and volatile reservoirs that are coupled to the climate. Interpretation and understanding of these records requires understanding of the mechanisms that involve the exchange of dust, water, and carbon dioxide between the surface and atmosphere, and the atmospheric redistribution of these species. We will summarize our use of the GFDL Mars general circulation model (MGCM), to exploration aspects of the interaction between the global climate and the polar regions. For example, our studies have shown that while the northern polar cap is the dominant seasonal source for water, it can act as a net annual source or sink for water, depending upon the cap temperatures and the bulk humidity of the atmosphere. This behavior regulates the annual and global average humidity of the atmosphere, as the cap acts as a sink if the atmosphere is too wet and a source if it is too dry. We will then focus our presentation on the ability of the MGCM to simulate the observed diurnal variations of surface temperature. We are particularly interested in assessing the influence of dust aerosol and water ice clouds on simulated surface temperature and the comparison with observations. Surface thermal inertia and albedo are critical boundary inputs for MGCM simulations. Thermal inertia is also of intrinsic interest as it may be related to properties of the surface such as particle size and surface character.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: The daily and seasonal variation of surface temperature is a central element in the description of martian climate. Surface thermal inertia and albedo are critical boundary inputs for simulating surface temperature in Mars general circulation models (MGCMs). Thermal inertia (TI) is also of intrinsic interest as it may be related to regolith properties such as particle size and surface character and so high spatial resolution is desirable. The recent mapping of TI at very high (0.25 deg) spatial resolution was achieved by fitting a thermal model to surface temperature observations obtained over a broad range of several martian years. However, varying atmospheric opacity (dust and water ice clouds) can significantly influence the estimated TI field and this effect was not fully compensated for. Opacity leads to an increase in morning temperature and a decrease in afternoon temperature, thus increasing the apparent thermal inertia.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 21; LPI-Contrib-1234-Pt-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Type: American Geophysical Union Annual Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: We have examined the influence of a regolith on the water cycle with a focus on high obliquity periods on Mars. Our findings show that while the regolith will almost certainly interact with the atmosphere initially, it is only a transient effect, and ice will form on the surface once the regolith is effectively isolated from the atmosphere. These low latitude deposits could conceivably be ice deposits formed at high obliquity and are certainly presently out of thermal equilibrium, but remain due to the insulating effect of a dust lag.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Special Session: Mars Climate Change; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN12518 , International Workshop on Mars Atmosphere: Modeling and Observations; Jan 13, 2014 - Jan 16, 2014; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Atmospheric tides are the primary source of daily air pressure variation at the surface of Mars. These tides are forced by solar heating of the atmosphere and modulated by the presence of atmospheric dust, topography, and surface albedo and thermal inertia. This results in a complex mix of sun-synchronous and nonsun- synchronous tides propagating both eastward and westward around the planet in periods that are integer fractions of a solar day. The Rover Environmental Monitoring Station on board the Mars Science Laboratory has observed air pressure at a regular cadence for over 1 Mars year and here we analyze and diagnose atmospheric tides in this pressure record. The diurnal tide amplitude varies from 26 to 63 Pa with an average phase of 0424 local true solar time, while the semidiurnal tide amplitude varies from 5 to 20 Pa with an average phase of 0929. We find that both the diurnal and semidiurnal tides in Gale Crater are highly correlated to atmospheric opacity variations at a value of 0.9 and to each other at a value of 0.77, with some key exceptions occurring during regional and local dust storms. We supplement our analysis with MarsWRF general circulation modeling to examine how a local dust storm impacts the diurnal tide in its vicinity. We find that both the diurnal tide amplitude enhancement and regional coverage of notable amplitude enhancement linearly scales with the size of the local dust storm. Our results provide the first long-term record of surface pressure tides near the martian equator.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN40231 , Icarus (ISSN 0019-1035) (e-ISSN 2643-2643); 268; 37-49
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN40065 , Journal of Geophysical Research: Planets (ISSN 2169-9097); 121; 9; 1770-1785
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Large-scale planetary waves are diagnosed from an analysis of profiles retrieved from the Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft during its scientific mapping phase. The analysis is conducted by assimilating thermal profiles and total dust opacity retrievals into a Mars global circulation model. Transient waves are largest throughout the northern hemisphere autumn, winter and spring period and almost absent during the summer. The southern hemisphere exhibits generally weaker transient wave behavior. A striking feature of the low-altitude transient waves in the analysis is that they show a broad subsidiary minimum in amplitude centred on the winter solstice, a period when the thermal contrast between the summer hemisphere and the winter pole is strongest and baroclinic wave activity might be expected to be strong. This behavior, here called the 'solsticial pause,' is present in every year of the analysis. This strong pause is under-represented in many independent model experiments, which tend to produce relatively uniform baroclinic wave activity throughout the winter. This paper documents and diagnoses the transient wave solsticial pause found in the analysis; a companion paper investigates the origin of the phenomenon in a series of model experiments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN40084 , Icarus (ISSN 0019-1035); 264; 456-464
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Thermal tides are the atmospheric response to diurnally varying thermal forcing resulting from radiative and convective heat transfer from the surface and from aerosol and gaseous heating within the atmosphere. Tides include sun-synchronous (migrating) waves driven in response to solar heating and additional non-migrating waves resulting from longitudinal variations in the distributions of topography, dust aerosol and water ice clouds. The systematic spatial mapping of temperature over 5 Mars years by the Mars Climate Sounder (MCS) has yielded a well-defined climatology of seasonally-varying temperature structures in the lower atmosphere, from 5 to ~80 km. Tide theory and Mars global circulation model (MGCM) simulations are a fruitful framework for relating temperature observations to thermal forcing by aerosol fields [1]. The analysis of density and temperature fields derived from MAVEN IUVS and NGIMS observations have revealed the presence of predominantly zonal wave 2 and 3 features at altitudes of 100-170 km that are almost certainly non-migrating tides propagating upward from the lower atmosphere [2,3]. In this presentation we will use the MCS climatology and MGCM simulations to relate the density variations seen by MAVEN with the seasonally varying tide activity in the lower atmosphere. Large amplitude perturbations in density are most sensitive to the tide components with the longest vertical wavelengths in temperature, which are well resolved in MCS observations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN41020 , International Conference on Mars Aeronomy 2017; May 15, 2017 - May 19, 2017; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...