ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: With NASA's commitment to the International Space Station (ISS) now all but certain for at least through the coming decade, serious consideration may be given to extended US in-space operations in the 2020s, when presumably the ISS will exceed its sell by date. Indeed, both ESA and Roscosmos, in addition to their unambiguous current commitment to ISS, have published early concept studies for extended post-ISS habitation (e.g., http://www.esa.int/esaHS/index.html, http://www.russianspaceweb.com/opsek.html and references therein). In the US, engineers and scientists have for a decade been working both within and outside NASA to assess one consistent candidate for long-term post-ISS habitation and operations, although interrupted by changing priorities for human space flight, Congressional direction, and constrained budgets. The evolving work of these groups is described here, which may have renewed relevance with the recent completion of a major review of the nation s human space flight program.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.5285.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Concepts for a long-duration habitat at Earth-Moon LI or L2 have been advanced for a number of purposes. We propose here that such a facility could also have an important role for low-latency telerobotic control of lunar surface equipment, both for lunar science and development. With distances of about 60,000 km from the lunar surface, such sites offer light-time limited two-way control latencies of order 400 ms, making telerobotic control for those sites close to real time as perceived by a human operator. We point out that even for transcontinental teleoperated surgical procedures, which require operational precision and highly dexterous manipulation, control latencies of this order are considered adequate. Terrestrial telerobots that are used routinely for mining and manufacturing also involve control latencies of order several hundred milliseconds. For this reason, an Earth-Moon LI or L2 control node could build on the technology and experience base of commercially proven terrestrial ventures. A lunar libration-point telerobotic node could demonstrate exploration strategies that would eventually be used on Mars, and many other less hospitable destinations in the solar system. Libration-point telepresence for the Moon contrasts with lunar telerobotic control from the Earth, for which two-way control latencies are at least six times longer. For control latencies that long, telerobotic control efforts are of the "move-and-wait" variety, which is cognitively inferior to near real-time control.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.5275.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx.10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders, if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating for long periods in free space must be developed. The engineering. management, and operational successes of the Space Station have demonstrated that international collaboration is possible. However, there is a danger that the hard-won lessons of current programs will be lost without continuing development of in-space operations. A program to achieve. for example, major astronomical goals in space using astronauts and robots will sustain international capabilities, produce highly visible achievements, and appeal to an additional broad community of stakeholders not currently involved with missions to the lunar surface.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating for long periods in free space must be developed. The engineering, management. and operational successes of the Space Station have demonstrated that international collaboratio~i is possible. However, there is a danger that the hard-won lessons of cLul+sent programs will be lost without continuing development of in-space operations. A program to achieve. for example. major astronomical goals in space using astronauts and robots will sustain international capabilities. produce highly visible achievements. and appeal to a11 additional broad community of stakeholders not currently involved with missions to the lunar surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Royal Observatory meeting; Sep 26, 2008; Edinburgh, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 59th International Astronautical Congress 2008; Sep 29, 2008 - Oct 03, 2008; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The current NASA architecture intended to return humans to the lunar surface includes the Ares V cargo launch vehicle, which is planned to be available within a decade. The capabilities designed for Ares V would permit an 8.8-m diameter, 55 mT payload to be carried to Sun-Earth L1,2 locations. That is, this vehicle could launch very large optical systems to achieve major scientific goals that would otherwise be very difficult. For example, an 8-m monolith UV/visual/IR telescope appears able to be launched to a Sun-Earth L2 location. Even larger apertures that are deployed or assembled seem possible. Alternatively, multiple elements of a spatial array or two or three astronomical observatories might be launched simultaneously. Over the years, scientists and engineers have been evaluating concepts for astronomical observatories that use future large launch vehicles. In this presentation, we report on results of a recent workshop held at NASA Ames Research Center that have improved understanding of the science goals that can be achieved using Ares V. While such a vehicle uniquely enables few of the observatory concepts considered at the workshop, most have a baseline mission that can be flown on existing or near-future vehicles. However, the performance of the Ares V permits design concepts (e.g., large monolithic mirrors) that reduce complexity and risk.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IAC-08-A5.3.6 , 59th International Astronautical Congress; Sep 29, 2008 - Oct 03, 2008; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: There is a growing consensus that within two decades initial human missions to Mars are affordable under plausible budget assumptions and with sustained international participation. In response to this idea, a distinguished group of experts from the Mars exploration stakeholder communities attended the "Affording Mars" workshop at George Washington University in December, 2013. Participants reviewed and discussed scenarios for affordable and sustainable human and robotic exploration of Mars, the role of the International Space Station over the coming decade as the essential early step toward humans to Mars, possible "bridge" missions in the 2020s, key capabilities required for affordable initial missions, international partnerships, and a usable definition of affordability and sustainability. We report here the findings, observations, and recommendations that were agreed to at that workshop.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IAA-SEC2014-WASP002 , GSFC-E-DAA-TN13466 , Affording Human Exploration of Mars Workshop; Dec 03, 2013 - Dec 05, 2013; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: About a half decade ago, several professionals working mainly in industry on scenarios for initial human exploration of Mars exploration together recognized that, under generally similar assumptions, there was a fair degree of similarity among these scenarios. Moreover, opportunities should be sought for greater community input into NASAs own scenario-building for the future of human space flight. A series of focused community workshops were considered to be effective to critically assess the increasingly sophisticated scenarios. Explore Mars, Inc. the American Astronautical Society agreed to support them. Four workshops to date each involve about sixty professional scientists, engineers, technologists, and strategists from NASA, academia, aerospace corporations, the National Academies, consulting organizations, and potential international partners. Each workshop produced a series of presentations and reports briefed to NASA leadership and other stakeholders.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN39595 , Mars Exploration Program and Analysis Group; Feb 23, 2017; Monrovia, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...