ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (162)
  • 1
    Publication Date: 2019-07-19
    Description: NASA and ESA are now planning a reduced version of the joint Europa Jupiter System Mission (EJSM), potentially including a radically descoped Jupiter Europa Orbiter (JEO) but still with magnetometer and plasma instruments. Similar field and plasma instrumentation would also reside on ESA's Jupiter Ganymede Orbiter (JGO), which conceivably could carry out multiple flybys of Europa before entering orbit at Ganymede. We are developing the 3D Ion Mass Spectrometer (IMS) designed to measure both major and minor ion species within the high radiation environment of Jupiter's magnetosphere and the icy Galilean moons. The IMS covers the energy range from 10 eV to 30 keY, wide field-of-view (FOV) capability and 10-60 sec time resolution for major ions. This instrument has two main goals: 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the global surface composition to trace elemental and significant isotopic levels; these goals are also applicable for in-situ measurements at Ganymede and Callisto, and remotely everywhere via the iogenic plasma for 10. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second goal gives information about transfer of material between the Galilean moons, e.g. mainly from 10 to the other moons, and further allows detection of oceanic materials emergent to the moon surfaces from subsurface layers putatively including salt water oceans. Outgassed exospheric materials are probed by the IMS by measuring pickup ions accelerated up to spacecraft altitudes of approximately 100-200 km in electric fields extending through the local magnetospheric environment and moon exosphere to the surface. Our 3D hybrid kinetic model of the moon-magnetosphere interaction is used to construct a global model of electric and magnetic fields for tracing of pickup ion trajectories back to the sources at approximate surface resolution of 100 km. We show that Europa's exospheric ionosphere is dominated by pickup ions with energies of 100-1000 eV. We also expect field aligned polar ion outflows driven by ionospheric electrons via the polarization electric field at Europa; the IMS will observe such outflows and thus sample the ionosphere below spacecraft orbit altitude approximately 100 km. Based on previous Ganymede studies, we also comment on IMS applications to a Ganymede orbiter. The IMS and the Europa interaction model are respectively being developed with support from NASA's Astrobiology Instrument Development (ASTID) and Outer Planets Research (OPR) programs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.4855.2011 , Magnetospheres of the Outer Planets 201l; Jul 11, 2011 - Jul 15, 2011; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: Many of the small to medium sized objects in the solar system can be characterized as having surface bounded exospheres, or atmospheres so tenuous that scale lengths for inter-particle collisions are much larger than the dimensions of the objects. The atmospheres of these objects are the product of their surfaces, both the surface composition and the interactions that occur on them and also their interiors when gases escape from there. Thus by studying surface bounded exospheres it is possible to develop insight into the composition and processes that are taking place on the surface and interiors of these objects. The Moon and Mercury are two examples of planetary bodies with surface bounded exospheres that have been studied through spectroscopic observations of sodium, potassium, and, on the moon, mass spectrometric measurements of lunar gases such as argon and helium.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 11; LPI-Contrib-1234-Pt-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: The Cassini Plasma Spectrometer (CAPS) instrument is scheduled to observe the plasma environment at Titan October 26,2004 from the Cassini Orbiter. Preliminary CAPS ion measurements from this encounter will be compared with measurements made by the Voyager I Plasma Science Instrument (PSI). The comparison will be used to evaluate previous interpretations and predictions of the Titan plasma environment that have been made using PSI measurements. The comparisons will focus on the composition and nature of the ambient plasma and pickup ions. Using the CAPS ion measurements, some of the questions to be addressed, as stimulated by the previous interpretations and predictions made evaluating PSI data, are the following: A) Are H+ and N+ the major ion components of Saturn's rotating magnetosphere in the vicinity of Titan? B) Are other ambient ions present? C) Are finite gyroradius effects apparent in ambient N+ as the result of its interaction with Titans atmosphere? D) Are the principal pickup ions composed of H+, H2+, N+, N2+ and CH4+? E) Is the dominant pickup ion closest to Titan's ionopause N2+? F) Is there evidence of slowing down of the ambient plasma due to pickup ion mass loading? F) If so, does the ambient plasma slow down rapidly, as the ionopause is approached and heavier pickup ions like N2+ are added? During the Voyager I flyby, Titan was in Saturn's magnetosphere. If Titan is in Saturn's magnetosheath or the solar wind at the encounter, questions similar to the above will be addressed as appropriate.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AGU Fall Session; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Using Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) ion composition data, we will investigate the compositional changes at the transition region between Saturn's magnetospheric flow and Titan's upper ionosphere. It is this region where scavenging of Titan's upper ionosphere can occur, where it is then dragged away by the magnetospheric flow as cold plasma for Saturn's magnetosphere. This cold plasma may form plumes as originally proposed by (1) during the Voyager 1 epoch. This source of cold plasma may have a unique compositional signature such as methane group ions. Water group ions that are observed in Saturn's outer magnetosphere (2,3) are relatively hot and probably come from the inner magnetosphere where they are born from fast neutrals escaping Enceladus (4) and picked up in the outer magnetosphere as hot plasma (5). This scenario will be complicated by pickup methane ions within Titan's mass loading region, as originally predicted by (6) based on Voyager 1 data and observationally confirmed by (3,7) using CAPS IMS data. But, CH4(+) ions or their fragments can only be produced as pickup ions from Titan's exosphere which can extend beyond the transition region of concern here, while CH5(+) ions can be scavenged from Titan's ionosphere. We will investigate these possibilities.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 38th Annual Division of Planetary Sciences Meeting; Oct 09, 2006 - Oct 13, 2006; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: Planetary targets have been observed with radar since the late 1950s when it was first used for ranging experiments with the Moon. As telescope size and power increased, it became possible to observe more distant targets (Venus, Mars, and the outer satellites). Inherent to radar observations is the uncertainty as to the source of the reflection, there being two points where range and Doppler rings intersect on a sphere. The use of interferometric methods, first used on the moon with two stations and later on Venus and Mars, solved this problem. We extend the method through the addition of a fourth receiving telescope (thus doubling the number of projected baselines) and integration of the newly available Mars Orbiter Laser Altimeter (MOLA) topographic datasets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 43-44; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: The intent of this paper is to show the relationships for Mars among albedo, thermal inertia, roughness inferred from MOLA pulse width spread data, and geology inferred from photogeological analyses. Mapping of surface units using these parameters and approaches, in combination with analysis of hyperspectral image data from ISM, TES, OMEGA, and CRISM observations, will maximize our understanding of the distribution and nature of surface units on the red planet. Results will directly impact the selection of landing sites that exhibit geological records needed to understand planetary habitability.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Solar System Remote Sensing; 3-4; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 283; 5410; 2062-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: With the recent announcement of the discovery of the possibility of life on Mars, there is renewed interest in Mars missions, perhaps eventually in human missions. Astronauts on such missions are at risk to occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. These events can pose a substantial risk to the health of the astronauts and to the on-board electronics. Effective forecast and warning of these events could provide time to take steps to minimize the risk (retreating to a safe haven, shutting down sensitive equipment, etc.) Providing that forecast capability, will require additional monitoring capability. The extent of this architecture is sensitive to the orbit selected for the transfer to and from Mars. This paper looks at the major classes of Mars missions (Conjunction and Opposition) and sub-categories of these classes and draws conclusions on the number of monitoring satellites needed for each, with a goal to reducing total system cost through optimum orbit selection.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Acta astronautica (ISSN 0094-5765); Volume 42; 1-8; 411-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The Galileo probe performed the first in situ measurements of the atmosphere of Jupiter on 7 December 1995. The probe returned data until it reached a depth corresponding to an atmospheric pressure of approximately 24 bars. This report presents a brief overview of the origins and purpose of the mission. Science objectives, entry parameters and mission events, and results are described. The remaining reports address in more detail the individual experiments summarized here.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 272; 5263; 837-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: Mars 2001 presents an exciting opportunity for advances in radiation risk management of a future human mission to Mars. The mission timing is particularly fortuitous, coming just after solar maxinuun, when there will be a high probability to observe significant solar particle events (SPEs). A major objective of this mission is to characterize the Martian radiation environment to support future human missions to Mars. In addition, the MARIE instruments on the Lander and Orbiter, designed to measure the energetic particle flux at Mars, can be used during the cruise phase to provide multipoint observations of SPEs in the critical region of the heliosphere (1 to 1.5 AU) needed to reduce the in-flight radiation risk to a future Mars-bound crew.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 104-106; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...