ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth, and intriguing in both its global distribution and geometric properties. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy. This most recent map is assembled from 〉 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations. Additional information is included in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Hemispheres Apart: The Origin and Modification of The Martian Crustal Dichotomy; 11-12; LPI-Contrib-1213
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: Introduction: The Mars Global Surveyor spacecraft has completed three Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriuging in both its global distribution and geometric properties [2,3,4,5]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from 〉 2 full years of MGS night-side observations. The increased sensitivity and spatial resolution afforded by this new map invites geologic interpretation akin to that here-to-for reserved for aeromagnetic and ship surveys on Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: Lunar Prospector data show that strong magnetic fields lie antipodal to large impact basins, while the basins are low. This suggests that physical mechanisms associated with the impacts are responsible for the large scale magnetization pattern.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: The near side magnetic field is dominated by the demagnetized Imbrium basin and Oceanus Procellarum regions. However, surrounding this area are a number of strong magnetic anomalies, including Rima Sirsalis and Reiner Gamma.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: The Magnetometer/Electron Reflectometer onboard Lunar Prospector has observed the solar wind interaction with remanent crustal magnetic fields at altitudes from 20 to 120 km. This interaction may be responsible for the formation of albedo swirls.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: Using high-resolution regional Lunar Prospector magnetometer magnetic field maps, we report here a close correlation of the strongest individual crustal anomalies with unusual curvilinear albedo markings of the Reiner Gamma class.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Description: Lunar prospector, the third mission in the faster, better, cheaper NASA Discovery program, was successfully launched from Cape Canaveral on Januray 6, 1998.
    Keywords: Lunar and Planetary Science and Exploration
    Type: EOS Transactions
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: One of the great surprises of the Mars Global Surveyor (MGS) mission was the discovery of intensely magnetized crust. These magnetic sources are at least ten times stronger than their terrestrial counterparts, probably requiring large volumes of coherently magnetized material, very strong remanence, or both. Perhaps the most intriguing aspect of these fields is their large scale coherence and organization into east-west stripes thousands of kilometers long. The anomalies were almost certainly created by thermoremanent magnetization (TRM) in the presence of a strong Martian dynamo. With few exceptions, the crustal fields are associated with the oldest terrain on Mars. Much of the northern lowlands appears to be non-magnetic, except for the relatively weak north polar anomalies and a few sources adja-cent to the dichotomy boundary, which appear to be associated with strongly magnetized crust south of the boundary. There is clear evidence for impact demagnetization of the Hellas, Argyre, and Isidis basins. Thus, Mars' crustal magnetic fields are among the oldest preserved geologic features on the planet.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Mars Geophysics; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from 〉 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Mars Geophysics; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: One of the great surprises of the Mars Global Surveyor mission was the discovery of intensely magnetized crust. Magnetic sources on Mars are at least ten times stronger than their terrestrial counterparts, probably requiring large volumes of coherently magnetized material, very strong remanence, or both. Although much of the attention so far has been placed on the strong crustal fields in the southern highlands, magnetic sources do exist in the younger low-lying plains. The strength and morphology of these sources could yield clues to the thermal and magnetic history of the northern plains. Low altitude (approx. 100 km) Magnetometer (MAG) data obtained during aerobraking have the greatest spatial resolution and sensitivity for identifying crustal magnetic sources from orbit, but those data are sparse and therefore limit the ability to discern morphology. Fully sampled MAG data obtained in the 400-km altitude mapping orbit have been differenced with respect to latitude (Br/Lat) to minimize the influence of induced fields from the solar wind interaction and thus enhance the sensitivity to weak crustal sources. Here we describe independent results from the Electron Reflectometer (ER), which remotely measures the magnetic field intensity at approx. 170 km altitude, and is roughly seven times more sensitive to crustal magnetic sources than measurements of Br from the mapping orbit.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 13; LPI-Contrib-1234-Pt-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...