ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (6)
  • 1
    Publication Date: 2019-07-18
    Description: "Observations of jovian x-rays made with the Earth-orbiting Chandra x-ray observatory on 18 December 2000 in support of the Cassini flyby of Jupiter demonstrate that most of Jupiters northern auroral x-rays come from a hot spot located poleward of the main auroral oval and magnetically connected to a region in the outer magnetosphere beyond 30 jovian radii. The hot spot is fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared1-5and ultraviolet6 emissions have been observed. The auroral x-ray emissions were observed to pulsate with an approximately 40-minute period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by Ulysses7, and by Galileo and Cassini.8 These results call into question the prevailing view that the jovian x-ray emissions are excited by the steady precipitation of energetic heavy ions from the outer edge of the Io plasma torus and are forcing a reconsideration of our understanding of the source mechanisms and energetics of the jovian x-ray aurora."
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: X-ray emissions from Jupiter have been observed for over 20 years. Jovian x-ray emissions are associated with high-latitude aurora and with solar fluorescence and/or an energetic particle source at low-latitudes as identified by past Einstein and ROSAT observations. Enhanced auroral x-rays were also observed to be associated with the impact of Comet Shoemaker-Levy 9. The high-latitude x-ray emissions are best explained by energetic sulfur and oxygen ion precipitation from the Jovian magnetosphere, a suggestion that has been confirmed by recent Chandra ACIS observations. Exciting new information about Jovian x-ray emissions has been made possible with Chandra's High Resolution Camera. We report here for the first time the detection of a forty minute oscillation associated with the Jovian x-ray aurora. With the help of ultraviolet auroral observations from Hubble Space Telescope, we pinpoint the auroral mapping of the x-rays and provide new information on the x-ray source mechanism.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Previous observations of jovian auroral x-ray emissions provided limited spectral information and extensive but low spatial resolution images. These emissions have been thought to result from charge exchange and excitation of energetic sulfur and oxygen ions precipitating from the outer edge of the Io Plasma Torus; bremsstrahlung emission from precipitating energetic electrons is too inefficient to produce the x-ray emissions. However, new high spatial resolution observations demonstrate that most of Jupiter's northern auroral x-rays come from a hot spot located much further north than the footprint of the Io Plasma Torus and which is even poleward of the main ultraviolet auroral oval. The hot spot appears fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. Interestingly, the hot spot x-rays pulsate with an approximately 40-minute period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian x-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the region of the Io Plasma Torus. Instead, the x-rays appear to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Observations of jovian x-rays made with the Earth-orbiting Chandra x-ray observatory on 18 December 2000 in support of the Cassini flyby of Jupiter demonstrate that most of Jupiters northern auroral x-rays come from a hot spot located poleward of the main auroral oval and magnetically connected to a region in the outer magnetosphere beyond 30 jovian radii. The hot spot is fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared1-5and ultraviolet6 emissions have been observed. The auroral x-ray emissions were observed to pulsate with an approximately 40-minute period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by Ulysses7, and by Galileo and Cassini8. These results call into question the prevailing view that the jovian x-ray emissions are excited by the steady precipitation of energetic heavy ions from the outer edge of the Io plasma torus and are forcing a reconsideration of our understanding of the source mechanisms and energetics of the jovian x-ray aurora.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: In support of the Cassini flyby of Jupiter, the Chandra HRC was used to observe the Jovian system for 10 hours on December 18, 2000, from 10-20 UT. Analysis of the data has yielded the following results: 1) a strong, high-latitude northern auroral "hot spot." which is relatively fixed near 60-70 degrees north latitude and 160-180 degrees system III longitude, and which pulsates with a period of about 40 minutes and has an average emitted power of about 2 GW; 2) relatively uniform low-latitude emissions, with a total power output of about 5 GW; 3) a southern aurora which shows both high latitude emissions and lower-latitude emissions originating in the L=8-12 region just outside the Io Plasma Torus, with an emitted power of about 1 GW. These power estimates are based on an assumed emission wavelength of 574 eV (corresponding to a bright emission line of OVII ions), and are subject to revision as Chandra ACIS spectra of Jupiter are analyzed further. We will present these and other results from this unique data set.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Two Years of Science with Chandra Conference; Sep 05, 2001 - Sep 07, 2001; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: Jets of water ice from surface fractures near the south pole of Saturn's icy moon Enceladus produce a plume of gas and particles. The source of the jets may be a liquid water region under the ice shell-as suggested most recently by the discovery of salts in E-ring particles derived from the plume-or warm ice that is heated, causing dissociation of clathrate hydrates. Here we report that ammonia is present in the plume, along with various organic compounds, deuterium and, very probably, Ar-40. The presence of ammonia provides strong evidence for the existence of at least some liquid water, given that temperatures in excess of 180 K have been measured near the fractures from which the jets emanate. We conclude, from the overall composition of the material, that the plume derives from both a liquid reservoir (or from ice that in recent geological time has been in contact with such a reservoir) as well as from degassing, volatile-charged ice. As part of a general comprehensive review of the midsize saturnian satellites at the conclusion of the prime Cassini mission, PI McKinnon and co-I Barr contributed to three review chapters.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature; 460; 487-490
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...