ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Neutron flux measurements by the Lunar Exploration Neutron Detector (LEND) on the Lunar Reconnaissance Orbiter (LRO) enable quantifying hydrogen-bearing volatiles in the lunar surface from orbit. Accurately determining hydrogen abundance requires discriminating between the instrument background detection rate and the population of lunar-sourced neutrons that are sensitive to surficial hydrogen. We have investigated the detection rate for lunar and non-lunar (spacecraft-sourced) neutrons in LEND by modeling maps of measured count rate in three LEND detector systems using linear combinations of maps compiled from LEND detectors and from the Lunar Prospector Neutron Spectrometer. We find that 30% of the global-average 24.926 +/- 0.020 neutron counts per second (cps) detected by the LEND STN3 thermal-energy neutron sensor are lunar-sourced neutrons in the thermal energy range (E 〈 0.4 eV), 65% are lunar-sourced neutrons in the epithermal and fast energy range (E 〉 0.4 eV), and 5% are from spacecraft-sourced background signal. In the SETN epithermal neutron detector, 90% of the 10.622 +/- 0.002 neutron detections per second are consistent with a lunar source of epithermal and fast neutrons combined (E 〉 0.4 eV), with 3% due to lunar-sourced thermal neutron leakage into the detector (E 〈 0.4 eV), and background signal accounting for 7% of total detections. Background signal due to spacecraft-derived neutrons is substantial in the CSETN collimated detector system, accounting for 57% of the global average detection rate of 5.082 +/- 0.001 cps, greater than the 48% estimated from cruise-phase data. Lunar-sourced epithermal and fast neutrons account for 43% of detected neutrons, including neutrons in collimation as well as neutrons that penetrate the collimator wall to reach the detector. We estimate a lower limit of 17% of lunar-sourced neutrons detected by CSETN are epithermal neutrons in collimation (0.37 cps), with an upper limit estimate of 54 +/- 11% of lunar-sourced neutrons received in collimation, or 1.2 +/- 0.2 cps global average. The pole-to-equator contrast ratio in epithermal and high-energy epithermal neutron flux indicates that the average concentration of hydrogen in the polar regolith above 80deg north or south latitude is 105 ppmw (parts per million by weight), or 0.095 +/- 0.01 wt% water-equivalent hydrogen. Above 88deg north or south, the concentration increases to 140 ppmw, or 0.13 +/- 0.02 wt% water-equivalent hydrogen. The similar pattern of neutron flux suppression at both poles suggests that hydrogen concentration generally increases nearer the pole and is not closely associated with a specific feature such as Shackleton Crater at the lunar south pole that has no northern counterpart. Epithermal neutron flux decreases with increasing latitude outside the polar regions, consistent with surface hydration that increases with latitude if that hydration extends to 13-40 cm into the surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN50885 , Planetary and Space Science (ISSN 0032-0633); 162; 89-104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) detects a widespread suppression of the epithermal neutron leakage flux that is coincident with the pole-facing slopes (PFS) of the Moon's southern hemisphere. Suppression of the epithermal neutron flux is consistent with an interpretation of enhanced concentrations of hydrogen-bearing volatiles within the upper meter of the regolith. Localized flux suppression in PFS suggests that the reduced solar irradiation and lowered temperature on PFS constrains volatility to a greater extent than in surrounding regions. Epithermal neutron flux mapped with LEND's Collimated Sensor for Epithermal Neutrons (CSETN) was analyzed as a function of slope geomorphology derived from the Lunar Orbiting Laser Altimeter (LOLA) and the results compared to co-registered maps of diurnally averaged temperature from the Diviner Lunar Radiometer Experiment and an averaged illumination map derived from LOLA. The suppression in the average south polar epithermal neutron flux on equator-facing slopes (EFS) and PFS (85-90 deg S) is 3.3 +/- 0.04% and 4.3 +/- 0.05% respectively (one-sigma-uncertainties), relative to the average count-rate in the latitude band 45-90 deg S. The discrepancy of 1.0 +/- 0.06% between EFS and PFS neutron flux corresponds to an average of approximately 23 parts-per-million-by-weight (ppmw) more hydrogen on PFS than on EFS. Results show that the detection of hydrogen concentrations on PFS is dependent on their spatial scale. Epithermal flux suppression on large scale PFS was found to be enhanced to 5.2 +/- 0.13%, a discrepancy of approximately 45 ppmw hydrogen relative to equivalent EFS. Enhanced poleward hydration of PFS begins between 50 deg S and 60 deg S latitude. Polar regolith temperature contrasts do not explain the suppression of epithermal neutrons on pole-facing slopes. The Supplemental on-line materials include supporting results derived from the uncollimated Lunar Prospector Neutron Spectrometer and the LEND Sensor for Epithermal Neutrons.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN21515 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...