ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (30)
Collection
Keywords
  • 1
    Publication Date: 2017-10-02
    Description: Here we present a database for the thermal behavior of volatile-bearing phases under reduced pressure in support of the Mars Polar Lander Thermal Evolved Gas Analyzer (TEGA).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: Lepidocrocite and siderite both exhibit different enthalpic events during their decomposition at reduced pressures when compared to those at ambient pressure, allowing us looking into the mechanisms of thermal decomposition at Mars-like pressures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: Here we present the thermal and evolved gas analyses for hydromagnesite and nesquehonite under reduced pressure.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science; Mar 13, 2000 - Mar 17, 2000; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: There are strong indications that dust is of great importance on Mars. Dust appears to have both long-term effects on the surface geologic evolution as well as on the aeolian processes in the present climate conditions. Early spacecraft missions confirmed hypotheses from telescopic work that changes observed in the planet s surface markings are caused by wind-driven redistribution of dust. Suspended dust is known to alter the atmospheric thermal structure and circulation as well as to obscure our ability for remote observation of the planet s surface, especially during the occasional development of larger, planet-encircling dust storms which occur on average once every three Martian years.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: A system of embedded sensors that can be incorporated into the wheel of any future mission rover would provide for a simple and fairly unobtrusive way to measure the distribution of electrostatic fields on the Martian surface and to measure variations in soil electrostatic response. This technology could perhaps be applied to different types of sensors that require the mobility provided by a rover s wheel.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-02
    Description: The high probability for dust interactions during Martian dust storms and dust devils combined with the cold, dry climate of Mars most likely result in airborne dust that is highly charged. On Earth, potential gradients up to 5 kV/m have been recorded and in some cases resulted in lightning. Although the Martian atmosphere is not conducive to lightning generation, it is widely believed that electrical discharge in the form of a corona occurs. In order to understand the breakdown of gases, Paschen measurements are taken which relate the minimum potential required to spark across a gap between two electrodes. The minimum potential is plotted versus the pressure-distance value for electrodes of a given geometry. For most gases, the potential decreases as the pressure decreases. For CO2, the minimum in the curve happens to be at Mars atmospheric pressures (5-7 mm Hg) for many distances and geometries. However, a very small amount (〈0.1%) of mixing gases radically changes the curve, as noted by Leach. Here, we present the first experimental results of a Paschen curve for a Mars gas mixture compared with 100% pure CO2.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: A prototype of an aerodynamic electrometer to measure the electrostatic properties of Martian atmospheric dust has been constructed. The instrument will enable a more thorough understanding of the potential for electrostatic discharge of different materials on Mars. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIII; LPI-Contrib-1109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Insulators need to be discharged after each wheel revolution. Sensor responses repeatable within one standard deviation in the noise of the signal. Insulators may not need to be cleaned after each revolution. Parent Technology- Mars Environmental Compatibility Assessment/Electrometer Electrostatic sensors with dissimilar cover insulators Protruding insulators tribocharge against regolith simulant Developed for use on the scoop for the 2001 Mars Odyssey lander Wheel Electrostatic Spectrometer Embedded electrostatic sensors in prototype Martian rover wheel If successful, this technology will enable constant electrostatic testing on Mars Air ionizing fan used to neutralize the surface charge on cover insulators . WES rolled on JSClA lunar simulant Control experiment -Static elimination not conducted between trials -Capacitor discharged after each experiment Charge neutralization experiment -Static elimination conducted between trials -Capacitor discharged after each experiment. Air ionizing fan used on insulators after each wheel revolution Capacitor discharged after each trial Care was taken to roll WES with same speed/pressure Error bars represent one standard deviation in the noise of e ach sensor
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2013-048RR , KSC-2013-048R , KSC-2013-048 , 2013 Annual Meeting of the Electrostatics Society of America; Jun 11, 2013 - Jun 13, 2013; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Apollo missions to the moon showed that lunar dust can hamper astronaut surface activities due to its ability to cling to most surfaces. NASA's Mars exploration landers and rovers have also shown that the problem is equally hard if not harder on Mars. In this paper, we report on our efforts to develop and electrodynamic dust shield to prevent the accumulation of dust on surfaces and to remove dust already adhering to those surfaces. The parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces. This technology has never been applied for space applications on Mars or the moon due to electrostatic breakdown concerns. In this paper, we show that an appropriate design can prevent the electrostatic breakdown at the low Martian atmospheric pressures. We are also able to show that uncharged dust can be lifted and removed from surfaces under simulated Martian environmental conditions. This technology has many potential benefits for removing dust from visors, viewports and many other surfaces as well as from solar arrays. We have also been able to develop a version of the electrodynamic dust shield working under. hard vacuum conditions. This version should work well on the moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2006-125 , 57th International Astronautical Congress conference; Oct 02, 2006 - Oct 06, 2006; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...