ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 283; 5410; 2062-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Acta astronautica (ISSN 0094-5765); Volume 53; 4-10; 387-97
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The recent loss of the Mars Polar Lander (MPL) mission represents a serious setback to Mars science and exploration. Targeted to land on the Martian south polar layered deposits at 76 degrees south latitude and 195 degrees west longitude, it would have been the first mission to study the geology, atmospheric environment, and volatiles at a high-latitude landing site. Since the conception of the MPL mission, a Mars exploration strategy has emerged which focuses on Climate, Resources and Life, with the behavior and history of water as the unifying theme. A successful MPL mission would have made significant contributions towards these goals, particularly in understanding the distribution and behavior of near-surface water, and the nature and climate history of the south polar layered deposits. Unfortunately, due to concerns regarding the design of the MPL spacecraft, the rarity of direct trajectories that enable high-latitude landings, and funding, an exact reflight of MPL is not feasible within the present planning horizon. However, there remains significant interest in recapturing the scientific goals of the MPL mission. The following is a discussion of scientific and strategic issues relevant to planning the next polar lander mission, and beyond.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 2; 245-246; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 137-138; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-10-30
    Description: It is vital to include an ultraviolet spectrograph as part of the JIMO payload to Europa, Ganymede and Callisto. Ultraviolet measurements are key for understanding the atmospheres, auroral activity and surfaces of these icy satellites, and a UV imaging spectrograph will also complement a visible camera and near-IR spectrometer, to achieve full wavelength coverage in remote sensing of the icy satellites. The UV instrument proposed for JIMO will be similar to that currently on board the Cassini spacecraft. The design draws on the experience of building UV spectrometers for Mariner, Pioneer, Galileo and Cassini. It will have three spectrographic channels that provide images and spectra of the atmosphere, aurorae and surface: An EUV channel (800-110 nm), an FUV channel (110 to 190 nm) range, and an NUV channel (180 to 350 nm).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 32; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tb of returned data expected in the first Mars year in the mapping orbit. The mapping orbit is nearly polar, 255 x 320 km above the surface, 12 orbits per day. The HiRISE camera, features a 0.5 m telescope, 12 m focal length, and 14 CCDs. Basic capabilities are summarized.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-02
    Description: Access to the interior of rocks on Mars is an important goal for understanding Mars petrology and geologic history. The spectral signature of the potentially diverse mineralogy of rocks on Mars is veiled by the ubiquitous dust and may be further hidden by weathered rind. We have developed a rock crusher and sample distribution system under the auspices of NASA s PIDDP program. We call it the SPADE : the Sample Processing and Distribution Experiment. Its purpose is to access the interiors of rocks on Mars and prepare samples for analysis by a suite of in situ instruments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-02
    Description: The Mars Reconnaissance Orbiter (MRO) is expected to launch in August 2005, arrive at Mars in March 2006, and begin the primary science phase in November 2006. MRO will carry a suite of remote-sensing instruments and is designed to routinely point off-nadir to precisely target locations on Mars for high-resolution observations. The mission will have a much higher data return than any previous planetary mission, with 34 Tbits of returned data expected in the first Mars year in the mapping orbit (255 x 320 km). The HiRISE camera features a 0.5 m telescope, 12 m focal length, and 14 CCDs. We expect to acquire approximately 10,000 observations in the primary science phase (approximately 1 Mars year), including approximately 2,000 images for 1,000 stereo targets. Each observation will be accompanied by a approximately 6 m/pixel image over a 30 x 45 km region acquired by MRO s context imager. Many HiRISE images will be full resolution in the center portion of the swath width and binned (typically 4x4) on the sides. This provides two levels of context, so we step out from 0.3 m/pixel to 1.2 m/pixel to 6 m/pixel (at 300 km altitude). We expect to cover approximately 1% of Mars at better than 1.2 m/pixel, approximately 0.1% at 0.3 m/pixel, approximately 0.1% in 3 colors, and approximately 0.05% in stereo. Our major challenge is to find the dey contacts, exposures and type morphologies to observe.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-02
    Description: Science return from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) will be optimized by maximizing science participation in the experiment. MRO is expected to arrive at Mars in March 2006, and the primary science phase begins near the end of 2006 after aerobraking (6 months) and a transition phase. The primary science phase lasts for almost 2 Earth years, followed by a 2-year relay phase in which science observations by MRO are expected to continue. We expect to acquire approx. 10,000 images with HiRISE over the course of MRO's two earth-year mission. HiRISE can acquire images with a ground sampling dimension of as little as 30 cm (from a typical altitude of 300 km), in up to 3 colors, and many targets will be re-imaged for stereo. With such high spatial resolution, the percent coverage of Mars will be very limited in spite of the relatively high data rate of MRO (approx. 10x greater than MGS or Odyssey). We expect to cover approx. 1% of Mars at approx. 1m/pixel or better, approx. 0.1% at full resolution, and approx. 0.05% in color or in stereo. Therefore, the placement of each HiRISE image must be carefully considered in order to maximize the scientific return from MRO. We believe that every observation should be the result of a mini research project based on pre-existing datasets. During operations, we will need a large database of carefully researched 'suggested' observations to select from. The HiRISE team is dedicated to involving the broad Mars community in creating this database, to the fullest degree that is both practical and legal. The philosophy of the team and the design of the ground data system are geared to enabling community involvement. A key aspect of this is that image data will be made available to the planetary community for science analysis as quickly as possible to encourage feedback and new ideas for targets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: The High Resolution Imaging Experiment, described by McEwen et al. and Delamere et al., will fly on the Mars 2005 Orbiter. In conjunction with the NASA Mars E/PO program, the HiRISE team plans an innovative and aggressive E/PO effort to complement the unique high-resolution capabilities of the camera. The team is organizing partnerships with existing educational outreach programs and museums and plans to develop its own educational materials. In addition to other traditional E/PO activities and a strong web presence, opportunities will be provided for the public to participate in image targeting and science analysis. The main aspects of our program are summarized.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...