ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (10)
  • 1
    Publication Date: 2017-10-02
    Description: A compact acousto-optic imaging spectrometer (AIMS) is being developed as a prototype instrument for a Mars lander, tunable from 0.5 to 2.3 microns. We describe the design of AIMS and its spectral imaging capabilities.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Although the primary focus of the Jupiter Icy Moons Orbiter (JIMO) mission will be the characterization and study of Jupiter's icy moons, there will be opportunities throughout the mission for unprecendented observations of Jupiter. With an adaptable suite of payload instruments, the atmospheric data collected by JIMO can help to answer fundamental questions about the largest planet in our solar system that remain after (or were generated by) previous spacecraft reconnaissance (e.g. Voyager, Galileo, and Cassini). Near-IR (0.7-4 micron) spectral imaging will most likely be used to identify mineralogies and ices on the Jovian satellites by virtue of their spectral signatures. This same capability is very well tailored for studies of Jovian atmospheric dynamics and structure. Near-IR methane absorption bands allow 2-D mapping of the horizontal wind field at size scales to tens of kms, as well as the height dependence of this field above the ammonia cloud deck (700 to a few mbar), constraining current models of atmospheric vertical structure. Likewise, atmospheric ice aerosols with unique spectroscopic signatures (ammonia ice near 1.5, 2.0, and 2.8 microns and water ice between 3.0 - 3.5 microns) can be detected and mapped using spectral difference imaging or spectrally inclusive principal-component methods. Spectral imaging of the Jovian aurora via (3)H(+) emission lines between 3 - 4 microns can be used to spatially map the interplay between the satellites) Jupiter's magnetosphere, and Jupiter's atmosphere. Each of these measurements addresses one or more fundamental questions related to the energy balance in Jupiter's atmosphere. All of these tunable imaging objectives can be achieved using acousto-optic tunable filters (AOTF's), which have been used for years in ground-based observing instruments and which have been proposed for numerous planetary missions. The application of this technology to the science objectives of both the icy satellites and Jovian atmospheric components of the JIMO mission will be discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 11; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Evidence suggests that electron concentrations above the dayside lunar surface can be significantly higher than expected from either the photo-ionization of exospheric neutrals or any other well-known process. The Luna 19 mission performed dual-frequency radio occultation experiments in order to determine electron column concentrations above the lunar limb as a function of tangent height (shown in the figure below), The resulting electron concentration profiles surprisingly indicated a peak of approx.500-1000/cu cm and scale heights of approx. 10-30 km. It has been suggested that electrically charged exospheric dust could contribute to these electron cnhancemcnts2 , Here we describe how to estimate the electrons produced by photo-charged dust, which is then used to predict electron concentrations from exospheric dust distribution models that are based on the "excess brightness" observed in Apollo 15 coronal photographs. The results indicate that radio occultation measurements likely provide a valuable perspective on the role of dust in the lunar environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.4600.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-14
    Description: NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN27029 , 2015 Annual Meeting of the Lunar Exploration Analysis Group; Oct 20, 2015 - Oct 22, 2015; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.CPR.6830.2012 , Instrumentation for Planetary Missions Workshop/NASA; Oct 12, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The scientific objectives of the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are: (1) determine the composition of the lunar atmosphere, investigate processes controlling distribution and variability - sources, sinks, and surface interactions; and (2) characterize the lunar exospheric dust environment, measure spatial and temporal variability, and influences on the lunar atmosphere. Impacts on the lunar surface from meteoroid streams encountered by the Earth-Moon system are anticipated to result in enhancements in the both the lunar atmosphere and dust environment. Here we describe the annual meteoroid streams expected to be incident at the Moon during the LADEE mission, and their anticipated effects on the lunar environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN13768 , Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a lunar orbiter launched in September 2012 that investigates the composition and temporal variation of the tenuous lunar exosphere and dust environment. The primary goals of the mission are to characterize the pristine gas and dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. To address this goal, the LADEE instrument suite includes an Ultraviolet/ Visible Spectrometer (UVS), which searches for dust, Na, K, and trace gases such as OH, H2O, Si, Al, Mg, Ca, Ti, Fe, as well as other previously undetected species. UVS has two sets of optics: a limb-viewing telescope, and a solar viewing telescope. The solar viewer is equipped with a diffuser (see Figure 1a) that allows UVS to stare directly at the solar disk as the Sun starts to set (or rise from) behind the lunar limb. Solar viewer measurements generally have very high signal to noise (SNR greater than 500) for 20-30 ms integration times. The 1-degree solar viewer field of view subtends a diameter of approximately 8 km at a distance of 400-450 km.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN14076 , Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN14070 , Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The only species that have been confirmed in the lunar exosphere are Na, K, Ar, and He. However, models for the production and loss of lunar regolith-derived exospheric species from source processes including micrometeoroid impact vaporization, sputtering, and, for Na and K, photon-stimulated desorption, predict a host of other species should exist in the lunar exosphere. Assuming that loss processes are limited to ballistic escape, photoionization, and recycling to the surface, we have computed column abundances and compared them to published upper limits from the Moon and to detected abundances from Mercury. Our results suggest that available measurements often do not constrain models, and underline the need for improved spectroscopic measurements of the lunar exosphere. Such investigations are planned by the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. Our calculations indicate that LADEE measurements promise to make definitive observations or set stringent upper limits for all regolith-driven exospheric species because of their favorable signal to noise ratio. Our models, along with LADEE observations, will constrain assumed model parameters for the Moon, such as sticking coefficients, source processes, and velocity distributions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.4788.2011 , NASA Lunar Space Forum; Jul 19, 2011 - Jul 21, 2011; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Lyman-Alpha Mapping Project (LAMP) UV spectrograph on board the Lunar Reconnaissance Orbiter (LRO) performed a campaign to observe the Moon's nanodust exosphere, evidence for which was provided by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet and Visible Spectrometer (UVS) during the 2014 Quadrantid meteoroid stream. These LADEE/UVS observations were consistent with a nanodust exosphere modulated by meteoroid impacts. LRO performed off-nadir maneuvers around the peak of the 2016 Quadrantids, in order to reproduce, as closely as possible, the active meteoroid environment and observing geometry of LADEE/UVS. We analyzed LAMP spectra to search for sunlight backscattering from nanodust. No brightness enhancement attributable to dust, of any size, was observed. We determine an upper limit for dust column concentration of ~10(^ 5) sq. cm for grains of radius ~25 nm, and an upper limit for dust column mass of ~10 11 g sq. cm, nearly independent of grain size for radii 〈100 nm.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN51193 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 44; 10; 4591-4598
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...