ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 305; 5685; 794-799
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain 〈/=25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mossbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 305; 5685; 842-845
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 306; 5702; 1698-1703
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Ancient thermal spring sites have several features which make them significant targets in a search for past life. Chemical (including redox) reactions in hydrothermal systems possibly played a role in the origin of life on Earth and elsewhere. Spring waters frequently contain reduced species (sulfur compounds, Fe(sup +2), etc.) which can provide chemical energy for organic synthesis. Relatively cool hydrothermal systems can sustain abundant microbial life (on Earth, at temperatures greater than 110 C). A spring site on Mars perhaps might even have maintained liquid water for periods sufficiently long to sustain surface-dwelling biota had they existed. On Earth, a variety of microbial mat communities can be sampled along the wide range of temperatures surrounding the spring, thus offering an opportunity to sample a broad biological diversity. Thermal spring waters frequently deposit minerals (carbonates, silica, etc.) which can entomb and preserve both fluid inclusions and microbial communities. These deposits can be highly fossiliferous and preserve biological inclusions for geologically long periods of time. Such deposits can cover several square km on Earth, and their distinctive mineralogy (e.g., silica- and/or carbonate-rich) can contrast sharply with that of the surrounding region. As with Martian volcanoes, Martian thermal spring complexes and their deposits might typically be much larger than their counterparts on Earth. Thus Martian spring deposits are perhaps readily detectable and even accessible. Elysium Planitia is an example of a promising region where hydrothermal activity very likely remobilized ground ice and sustained springs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AGU Fall Meeting; Dec 11, 1995 - Dec 15, 1995; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14〈Z〈92) from scooped soil samples and drilled rock powders collected on the Mars surface. The geometry of the source, sample, and detector is shown. A transmission geometry was chosen so that diffracted intensities in the low-20 region (5-15 deg), important for phyllosilicate identification, could be detected.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-19549 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: 4th International Workshop on the Mars Atmosphere: Modelling and Observations; Feb 11, 2011; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory rover Curiosity investigated sedimentary rocks that were deposited in a diversity of fluvio-lacustrine settings. The entire science payload was employed to characterize the mineralogy and chemistry of the Sheepbed mudstone at Yellowknife Bay and the Windjana sandstone at the Kimberley. Data from the CheMin instrument, a transmission Xray diffractometer, were used to determine the quantitative mineralogy of both samples. The Sheepbed mudstone contains detrital basaltic minerals, calcium sulfates, iron oxides or hydroxides, iron sulfides, trioctahedral smectite, and amorphous material. The mineral assemblage and chemical data from APXS suggest that the trioctahedral smectite and magnetite formed authigenically as a result of alteration of olivine. The apparent lack of higher-grade phyllosilicates (e.g., illite and chlorite) and the presence of anhydrite indicate diagenesis at ~50- 80 C. The mineralogy of the Windjana sandstone is different than the Sheepbed mudstone. Windjana contains significant abundances of K-feldspar, low- and high-Ca pyroxenes, magnetite, phyllosilicates, and amorphous material. At least two distinct phyllosilicate phases exist: a 10 phase and a component that is expanded with a peak at ~11.8 . The identity of the expanded phase is currently unknown, but could be a smectite with interlayer H2O, and the 10 phase could be illite or collapsed smectite. Further work is necessary to characterize the phyllosilicates, but the presence of illite could suggest that Windjana experienced burial diagenesis. Candidates for the cementing agents include fine-grained phyllosilicates, Fe-oxides, and/or amorphous material. Interpretations of CheMin data from the Windjana sandstone are ongoing at the time of writing, but we will present an estimate of the composition of the amorphous material from mass balance calculations using the APXS bulk chemistry and quantitative mineralogy from CheMin.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-31874 , American Geophysical Union (AGU) Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-14
    Description: The search for evidence of life on Mars is a highly interdisciplinary enterprise which extends beyond the traditional life sciences. Mars conceivably had a pervasive ancient biosphere which may have persisted even to the present, but only in subsurface environments. Understanding the history of Mars' global environment, including its inventory of volatile elements, is a crucial part of the search strategy. Those deposits (minerals, sediments, etc.) which could have and retained a record of earlier biological activity must be identified and examined. While the importance of. seeking another biosphere has not diminished during the years since the Viking mission, the strategy for Mars exploration certainly has been modified by later discoveries. The Viking mission itself demonstrated that the present day surface environment of Mars is hostile to life as we know it. Thus, to search effectively for life on Mars, be it extant or extinct, we now must greatly improve our understanding of Mars the planet. Such an understanding will help us broaden our search beyond the Viking lander sites, both back in time to earlier epochs and elsewhere to other sites and beneath the surface. Exobiology involves much more than simply a search for extant life beyond Earth. It addresses the prospect of long-extinct biospheres and also the chemistry, organic and otherwise, which either led to life or which occurred on rocky planets that remained lifeless. Even a Mars without a biosphere would reveal much about life. How better to understand the origin and impact of a biosphere than to compare Earth with another similar but lifeless planet? Still, several relatively recent discoveries offer encouragement that a Martian biosphere indeed might have existed. The ancient Martian surface was extensively sculptured by volcanism and the activity of liquid water. Such observations invoke impressions of an ancient martian atmosphere and environment that resembled ancient Earth more than present-day Mars. Since Viking, we have learned that our own biosphere began prior to 3.5 billion years ago, during an early period when our solar system apparently was sustaining clement conditions on at least two of its planets. Also, we have found that microorganisms can survive, even flourish, in environments more extreme in temperature and water availability than had been previously recognized. The common ancestor of life on Earth probably was adapted to elevated temperatures, raising the possibility that hydrothermal systems played a central role in sustaining our early biosphere. If a biosphere ever arose on Mars, at least some of its constituents probably dwelled in the subsurface. Even today, conditions on Mars and Earth become more similar with increasing depth beneath their surfaces. For example, under the martian permafrost, the geothermal gradient very likely maintains liquid water in environments which resemble aquifers on Earth. Indigenous bacteria have recently been recovered from deep aquifers on Earth. Liquid groundwater very likely persisted throughout Mars' history. Thus, martian biota, if they ever existed, indeed might have survived in subsurface environments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 13, 1995 - Mar 17, 1995; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...