ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: A principal objective of Mars exploration is the search for evidence of past life which may have existed during an earlier clement period of Mars history. We would like to investigate the history of surface water activity (which is a requirement for all known forms of life) by identifying and documenting the distribution of minerals which require water for their formation or distribution. A knowledge of the mineralogy of the present Martian surface would help to identify areas which, due to the early activity of water, might have harbored ancient life. It would be desirable to establish the presence and characterize the distribution of hydrated minerals such as clays, and of minerals which are primarily of sedimentary origin such as carbonates, silica and evaporites. Mineralogy, which is more critical to exobiological exploration than is simple chemical analysis (absent the detection of organics), will remain unknown or will at best be imprecisely constrained unless a technique sensitive to mineral structure such as powder X-ray diffraction (XRD) is employed. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor Science Objectives/Measurement Requirements Workshop; May 10, 1994 - May 12, 1994; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help determine the types and abundances of amorphous phases in the martian rocks and sand shadow. These models suggest that the rocks and sand shadow are composed of approx 30% amorphous phases. Sulfate-adsorbed allophane and ferrihydrite were measured by EGA to further understand the speciation of the sulfur present in the amorphous component. These data indicate that sulfate adsorbed onto the surfaces of amorphous phases could explain a portion of the SO2 evolution in the Rocknest SAM data. The additional constraints placed on the mineralogy and chemistry of the aqueous alteration phases through our laboratory measurements can help us better understand the nature of the fluids that affected the different samples and devise a history of aqueous alteration for the Sheepbed Member of the Yellowknife Bay Fm. at Gale crater.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30039 , American Geophysical Union (AGU) Annual Fall Meeting; Dec 09, 2013 - Dec 13, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating 〉60degC in the presence of water. Given estimated geothermal gradients on Mars temperatures 〈60 degC might still be consistent with (but do not require) moderate burial. However, our ability to identify interstratified minerals is greatly limited by the lack of access to traditional treatments methods used in the lab (e.g., ethylene glycol solvation). Our preferred explanation for the origin of trioctahedral smectites in Sheepbed mudstone is in situ production via reaction of olivine, water and Si-bearing amorphous material, an important mudstone component detected by XRD. Elevated levels of magnetite in the Sheepbed and the trioctahedral monomineralic nature of the clay minerals support this model. These observations, combined with previous studies of olivine stability, support the persistence of circum-neutral hydrous conditions for thousands of years at YKB.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Control ID 1810422 , JSC-CN-30048 , American Geophysical Union Fall Meeting 2013; Dec 07, 2013 - Dec 14, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Dawn is currently in orbit around the asteroid 4 Vesta, and one of the major objectives of the mission is to probe the relationship of Vesta to the Howardite, Eucrite, and Diogenite (HED) meteorites. As Vesta is an example of a differentiated planetary embryo, Dawn will also provide fundamental information about planetary evolution in the early solar system [1]. To help accomplish this overall goal, the Dawn spacecraft carries the Gamma-Ray and Neutron Detector (GRaND). GRaND uses planetary gamma-ray and neutron spectroscopy to measure the surface elemental composition of Vesta and will provide information that is unique and complementary to that provided by the other Dawn instruments and investigations. Gamma-ray and neutron spectroscopy is a standard technique for measuring planetary compositions [2], having successfully made measurements at near-Earth asteroids, the Moon, Mars, Mercury and now Vesta. GRaND has made the first measurements of the neutron spectrum from any asteroid (previous asteroid measurements were only made with gamma-rays). Dawn has been collecting data at Vesta since July 2011. The prime data collection period for GRaND is the Low-Altitude Mapping Orbit (LAMO), which started on 12 December 2011 and will last through spring 2012. During LAMO, the Dawn spacecraft orbits at an average altitude of ~210 km above the surface of Vesta, which allows good neutron and gamma-ray signals to be detected from Vesta. A description of the overall goals of GRaND and a summary of the initial findings are given elsewhere [3,4]. The subject of this study is to present the information that will be returned from GRaND using fast neutron measurements. Here, we discuss what fast neutrons can reveal about Vesta s surface composition, how such data can address Dawn science goals, and describe fast neutron measurements made in the early portion of the Vesta LAMO phase.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25719 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with widespread evidence of liquid water at the planet's surface in the Noachian and Early Hesperian. Current estimates of ancient martian CO levels, derived from global inventories of carbon, and orbital detections of Noachian and Early Hesperian clay mineralbearing terrains indicate CO levels that are unable to support warm and wet conditions. These estimates are subject to various sources of uncertainty however. Mineral and contextual sedimentary environmental data collected by the Mars Science Laboratory rover Curiosity in Gale Crater provide a more direct means of estimating the atmospheric partial pressure of CO (P ) coinciding with a long-lived lake system in Gale crater at approximately 3.5 Ga. Results from a reaction transport model, which simulates mineralogy observed within the Sheepbed member at Yellowknife Bay by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicate atmospheric levels in the 10's mbar range. At such low P levels, climate models are unable to warm Hesperian Mars anywhere near the freezing point of water and other gases are required to raise atmospheric pressure to prevent lakes from boiling away. Thus, lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models lack an essential component that would serve to elevate surface temperatures, at least temporally and/or locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO in inferred warmer conditions of the Noachian.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-38285 , 2016 AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN62066 , AGU 2018 Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.5254.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of approx. 10(exp 6)sq km and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to he comparatively young-preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past approx. 10(exp 5)-10(exp 8) years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet-documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason-providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LPI-Contrib-987 , Icarus; I44; 210-242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Sediments of the Sheepbed unit, Gale Crater, were analyzed by the CheMin X-ray diffraction instrument on the Curiosity Rover. The sediments consist of typical basalt minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe oxide/hydroxides, Fesulfides, amorphous material, and a phyllosilicate. The phyllosilicate has a broad 001 peak at approx 1.0 nm, consistent with a poorly ordered smectite. However, in the absence of diagnostic tests possible on Earth, its identity is not clear. The position of the 06L diffraction band is generally used to distinguish dioctahedral from trioctahedral smectite, but it is beyond CheMin's range of 2 Theta. The measured position of the 02L diffraction band (approx 22.5deg 2 Theta by CheMin), implies that the smectite is trioctahedral. The exact position and shape of the 02L band is determined by the cations in the 'M' sites of the smectite; to constrain those cations, we sought analogs among terrestrial smectites, emphasizing those developed from basaltic precursors. A potential analog for the Sheepbed smectite is 'griffithite,' a variety of trioctahedral smectite in altered basalt of the Topanga formation, Griffith Park, Los Angeles. 'Griffithite' has an 02L diffraction band that is close in position and shape to that of the Sheepbed smectite, although 'griffithite' has a very sharp 001 peak, indicating a high degree of layer ordering not seen in the Sheepbed smectite. A typical chemical formula for 'griffithite,' determined by electron microprobe, is (Ca0.59 Na0.03) (Mg4.28 Fe1.83) (Si6.64 Al1.36) O20 (OH)4, normalized to Si+Al=8. This formula is consistent with a fully trioctahedral Fe-Mg smectite with Ca and Na as interlayer cations. In the Topanga basalt, four types of 'griffithite' are present: fine-grained, filling cracks and vesicles; coarse-grained, filling vesicles; coarse-grained, replacing olivine phenocrysts; and coarse-grained, replacing glassy mesostasis. The fine-grained 'griffithite' formed first, and the last three varieties may be contemporaneous. One sample shows agate (alpha- quartz) that was precipitated between the episodes of deposition of the fine-grained and coarse-grained 'griffithite.' 'Griffithite' is not unique as a possible terrestrial analog - some clay minerals from the Doushantou formation, China, have similar 02L diffraction bands, and many basalts contain smectites in vesicles and as replacements after olivine. Similar trioctahedral smectites occur also in the nakhlite martian meteorites - as veinlets and replacements of olivine. By understanding the formation of these terrestrial clays, we hope to constrain the nature and mechanism of formation of the Sheepbed clay mineral.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30043 , American Geophysical Union (AGU) Annual Fall Meeting; Dec 09, 2013 - Dec 13, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30041 , 2013 American Geophysical Union (AGU) Annual Fall Meeitng; Dec 09, 2013 - Dec 13, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...