ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: We present results for low temperature and pressure experiments of ice formation. These experiments were performed for comparison to Kuiper Belt Objects.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Isotopic dating is an essential tool to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar Laser Experiment (KArLE) brings together a novel combination of several flight-proven components to provide precise measurements of potassium (K) and argon (Ar) that will enable accurate isochron dating of planetary rocks. KArLE will ablate a rock sample, measure the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using mass spectrometry (MS), and relate the two by measuring the volume of the ablated pit by optical imaging. Our work indicates that the KArLE instrument is capable of determining the age of planetary samples with sufficient accuracy to address a wide range of geochronology problems in planetary science. Additional benefits derive from the fact that each KArLE component achieves analyses useful for most planetary surface missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M15-4143 , International Workshop on Instrumentation for Planetary Missions (IPM-2014); Nov 04, 2014 - Nov 07, 2014; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Water ice and other volatiles may be located in the Moon's polar regions, with sufficient quantities for in situ extraction and utilization by future human and robotic missions. Evidence from orbiting spacecraft and the LCROSS impactor suggests the presence of surface and/or nearsurface volatiles, including water ice. These deposits are of interest to human exploration to understand their potential for use by astronauts. Understanding the composition, quantity, distribution, and form of water/H species and other volatiles associated with lunar cold traps is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits could also reveal important information about the delivery of water to the Earth- Moon system, so are of scientific interest. The scientific exploration of the lunar polar regions was one of the key recommendations of the Planetary Science Decadal Survey. In order to address NASA's SKGs, the Advanced Exploration Systems (AES) program selected three lowcost 6-U CubeSat missions for launch as secondary payloads on the first test flight (EM1) of the Space Launch System (SLS) scheduled for 2017. The Lunar Flashlight mission was selected as one of these missions, specifically to address the SKG associated with lunar volatiles. Development of the Lunar Flashlight CubeSat concept leverages JPL's Interplanetary Nano- Spacecraft Pathfinder In Relevant Environment (INSPIRE) mission, MSFC's intimate knowledge of the Space Launch System and EM-1 mission, small business development of solar sail and electric propulsion hardware, and JPL experience with specialized miniature sensors. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and its physical state, and map its concentration at the kilometer scale within the permanently shadowed regions of the lunar south pole. After being ejected in cislunar space by SLS, Lunar Flashlight deploys its solar panels and solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit spiraling down to a perilune of 30-10 km above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight into permanently shadowed regions, measuring surface albedo with a four-filter point spectrometer at 1.1, 1.5 1.9, and 2.0 microns. Water ice will be distinguished from dry regolith from these measurements in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and reflectance ratios will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain. Lunar Flashlight enables a low-cost path to in-situ resource utilization (ISRU) by identifying operationally useful deposits (if there are any), which is a game-changing capability for expanded human exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M14-3629 , NASA''s Solar System Exploration Research Virtual Institute Exploration Science Forum; Jul 21, 2014 - Jul 23, 2014; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Over the last 5 years, NASA has invested in development and risk-reduction activities for a new generation of planetary landers capable of carrying instruments and technology demonstrations to the lunar surface and other airless bodies. The Robotic Lunar Lander Development Project (RLLDP) is jointly implemented by NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL). The RLLDP team has produced mission architecture designs for multiple airless body missions to meet both science and human precursor mission needs. The mission architecture concept studies encompass small, medium, and large landers, with payloads from a few kilograms to over 1000 kg, to the Moon and other airless bodies. The payload and concept of operations for the U.S. contribution to the ILN was guided by an independent Science Definition Team, which required each node to operate for 6 years continuously, including through lunar eclipse periods, and to carry a seismometer, heatflow probe, retroreflector, and electromagnetic sounding instrument. Some configuration trades using penetrators, hard landers, and soft landers are discussed in [1, 2]; the preferred concept became soft-landing propulsive landers discussed in [3]. The landers were sized primairly according to their power systems: an ASRG lander configuration is estimated at 155 kg dry mass, which includes a payload suite estimated at 23 kg including payload accommodation and deployment; a solar array-battery (SAB) lander configuration is somewhat larger at 265 kg of dry mass including a 19 kg payload suite with payload accommodation
    Keywords: Lunar and Planetary Science and Exploration
    Type: M13-2937 , Annual Meeting of the Lunar Exploration Analysis Group; Oct 14, 2013 - Oct 16, 2013; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanently shadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN30725 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The South Pole-Aitken (SPA) basin is the stratigraphically oldest identifiable lunar basin and is therefore one of the most important targets for absolute age-dating to help understand whether ancient lunar bombardment history smoothly declined or was punctuated by a cataclysm. The SPA basin also has another convenient property, a geochemically distinct interior, unobscured by extensive mare basalt fill. A case has been made for the possible origin of the Dhofar 961 lunar meteorite in the South Pole-Aitken (SPA) basin, based on comparing its composition with Lunar Prospector gamma-ray data for the interior of the SPA basin. Dhofar 961 contains several different impact-melt (IM) lithologies. Jolliff et al. described two classes of mafic impact-melt lithologies, one dominated by olivine (Lithology A) and the other by plagioclase (An 95-96.5) (Lithology B). Broad-beam analyses of these lithologies yielded (is) approximately 14.0 wt% FeO, 11.7 wt% MgO, and 15.4 wt% Al2O3. Lithologies A and B differ by approximately 2.5% Al2O3, 1.5% FeO and 1.5% MgO, consistent with the occurrence of olivine phenocrysts in A and plagioclase clasts in B. Both lithologies are considerably more mafic than the Apollo mafic impact-melt breccias, corresponding to olivine gabbronorite. Joy et al. used U-Pb dating to investigate phosphate fragments in the Dhofar 961 matrix and impact-melt clasts. Matrix phosphates have 4.34 to 4 Ga ages, consistent with ancient KREEP-driven magmatic episodes and Pre-Nectarian ((is) greater than 3.92 Ga). Phosphates found within Dhofar 961 crystalline impact melt breccia clasts range from 4.26 to 3.89 Ga, potentially recording events throughout the basin forming epoch of lunar history. The youngest reset ages in the Dhofar 961 sample represent an upper limit for the time of formation of the meteorite. Joy et al suggested this age represents the final impact that mixed and consolidated several generations of precursor rocks into the Dhofar meteorite group, although they note that further age dating of all the stones is required to test this hypothesis. We received a split of Dhofar 961 from R. Zeigler consisting of a large clast of IM Lithology B, with some light-colored, friable matrix clinging to the external margins of the impact-melt clast. This lithology was not present in the samples investigated by Joy et al. and thus does not have corresponding U-Pb ages on it. We created multiple subsplits of both the IM and matrix lithologies, each weighing several tens of micrograms. We conducted Ar-40 Ar-39 dating of this candidate SPA material by high-resolution step heating and comparing it with the regolith that surrounds it.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN29275 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Geochronology is a fundamental measurement for planetary samples, providing the ability to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events, and providing global and solar system context for such events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar radiometric dating approach to in situ dating has been validated by the Curiosity rover on Mars as well as several laboratories on Earth. Several independent projects developing in situ rock dating for planetary samples, based on the K-Ar method, are giving promising results. Among them, the Potassium (K)-Argon Laser Experiment (KArLE) at MSFC is based on techniques already in use for in planetary exploration, specifically, Laser-induced Breakdown Spectroscopy (LIBS, used on the Curiosity Chemcam), mass spectroscopy (used on multiple planetary missions, including Curiosity, ExoMars, and Rosetta), and optical imaging (used on most missions).
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN29274 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanentlyshadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth- Moon system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN29292 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Meteorite science is rich with compositional indicators by which we classify parent bodies, but few sample groups are definitively linked with asteroid spectra. More robust links need to be forged between meteorites and their parent bodies to understand the composition, diversity and distribution. A major link can be sample analysis of the parent body material and comparison with meteorite data. Hayabusa, the first sample return mission of the Japanese Aerospace Exploration Agency (JAXA), was developed to rendezvous with and collect samples from asteroid Itokawa and return them to Earth. Thousands of sub-100 micron particles were recovered, apparently introduced during the spacecraft impact into the surface of the asteroid, linking the asteroid Itokawa to LL chondrites [1]. Upcoming missions Hayabusa 2 and OSIRIS-REx will collect more significant sample masses from asteroids. In all these cases, the samples are or will be a collection of regolith particles. Sample return to earth is not the only method for regolith particle analysis. Dust is present around all airless bodies, generated by micrometeorite impact into their airless surfaces, which in turn lofts regolith particles into a "cloud" around the body. The composition, flux, and size-frequency distribution of dust particles can provide significant insight into the geological evolution of airless bodies [2]. For example, the Cassini Cosmic Dust Analyzer (CDA) detected salts in Enceladus' icy plume material, providing evidence for a subsurface ocean in contact with a silicate seafloor [3]. Similar instruments have flown on the Rosetta, LADEE, and Stardust missions. Such an instrument may be of great use in obtaining the elemental, isotopic and mineralogical composition measurement of dust particles originating from asteroids without returning the samples to terrestrial laboratories. We investigated the ability of a limited sample analysis capability using a dust instrument to forge links between asteroid regolith particles and known meteorite groups. We further set limits on the number of individual particles statistically needed to robustly reproduce a bulk composition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN20259 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The instrument 'Potassium (K) Argon Laser Experiment' (KArLE) is developed and designed for in situ absolute dating of rocks on planetary surfaces. It is based on the K-Ar dating method and uses the Laser Induced Breakdown Spectroscopy - Laser Ablation - Quadrupole Mass Spectrometry (LIBSLA- QMS) technique. We use a dedicated interface to combine two instruments similar to SAM of Mars Science Laboratory (for the QMS) and ChemCam (for the LA and LIBS). The prototype has demonstrated that KArLE is a suitable and promising instrument for in situ absolute dating.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN24287 , European Planetary Science Congress 2015; Sep 27, 2015 - Oct 02, 2015; Nantes; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...