ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (1)
  • minus-end-directed microtubule motility  (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 21 (1992), S. 281-292 
    ISSN: 0886-1544
    Keywords: ATPase ; CTPase ; minus-end-directed microtubule motility ; cytoplasmic dynein ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Extracts of unfertilized sea urchin eggs contain at least two isoforms of cytoplasmic dynein. One exhibits a weak affinity for microtubules and is primarily soluble. The other isoform, HMr-3, binds to microtubules in an ATP-sensitive manner, but is immunologically distinct from the soluble egg dynein (Porter et al.: Journal of Biological Chemistry 263:6759-6771, 1988). We have now further distinguished these egg dynein isoforms based on differences in NTPase activity. HMr-3 copurifies with NTPase activity, but it hydrolyzes CTP at 10 times the rate of ATP. The soluble egg dynein is similar to flagellar dynein in its nucleotide specificity; its MgCTPase activity is ca. 60% of its MgATPase activity. Non-ionic detergents and salt activate the MgATPase activities of both enzymes relative to their MgCTPase activities, but this effect is more pronounced for the soluble egg dynein than for HMr-3. Sucrose gradient-purified HMr-3 promotes an ATP-sensitive microtubule bundling, as seen with darkfield optics. We have also isolated a 20 S microtubule translocating activity by sucrose gradient fractionation of egg extracts, followed by microtubule affinity and ATP release. This 20 S fraction, which contains the HMr-3 isoform, induces a microtubule gliding activity that is distinct from kinesin. Our observations suggest that soluble dynein resembles axonemal dynein, but that HMr-3 is related to the dynein-like enzymes isolated from a variety of cell types and may represent the cytoplasmic dynein of sea urchin eggs.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: Dated at approximately 3.9 billion years of age, carbonate disks, found within fractures of the host rock of Martian meteorite ALH84001, have been interpreted as secondary minerals that formed at low temperature in an aqueous medium. Heterogeneously distributed within these disks are magnetite nanocrystals that are of Martian origin. Approximately one quarter of these magnetites have morphological and chemical similarities to magnetite particles produced by magnetotactic bacteria strain MV-1, which are ubiquitous in aquatic habitats on Earth. Moreover, these types of magnetite particles are not known or expected to be produced by abiotic means either through geological processes or synthetically in the laboratory. The remaining three quarters of the ALH84001 magnetites are likely products of multiple processes including, but not limited to, precipitation from a hydrothermal fluid, thermal decomposition of the carbonate matrix in which they are embedded, and extracellular formation by dissimilatory Fe-reducing bacteria. We have proposed that the origins of magnetites in ALH84001 can be best explained as the products of multiple processes, one of which is biological. Recently the three-dimensional (3-D) external morphology of the purported biogenic fraction of the ALH84001 magnetites has been the subject of considerable debate. We report here the 3-D geometry of biogenic magnetite crystals extracted from MV-1 and of those extracted from ALH84001 carbonate disks using a combination of high resolution classical and tomographic transmission electron microscopy (TEM). We focus on answering the following questions: (1) which technique provides adequate information to deduce the 3-D external crystal morphology?; and, (2) what is the precise 3-D geometry of the ALH84001 and MV-1 magnetites?
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-8386 , Lunar and Planetary Science XXXV: Astrobiology; LPI-Contrib-1197
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...