ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (46)
  • LIFE SCIENCES  (2)
  • 1
    Publication Date: 2011-08-24
    Description: The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 436; 7047; 49-54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: We examine the carbon and oxygen isotope composition of carbonate minerals that formed in two low-temperature terrestrial environments. Field locations were chosen to represent environments where microcrystalline carbonates (caliches) form. Samples include caliche crusts collected from the tsekel zone of N. Yucatan, Mexico, as well as carbonate mud from the edge of a near-by salt pan, representing both ancient and modern-precipitated carbonates. Additional field samples of surface-coating caliche were collected from two volcanic fields in Arizona. Preliminary results indicate that there is an overall depletion of 18O and 13C as a function of the extent of meteoric diagenesis. These data are used as terrestrial analogs to gauge whether carbonates that have been found within Martian meteorites could possibly have formed under these or similar conditions on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Weird Martian Minerals: Complex Mars Surface Processes; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Mars Exploration Rover Opportunity is exploring the rim of 22 km diameter, Noachian-aged Endeavour crater. Marathon Valley cuts through the central region of the western rim providing a window into the local lower rim stratigraphic record. Spectra from the Compact Reconnaissance Imaging Spectrometer for Mars show evidence for the occurrence of Fe-Mg smectite in this valley, indicating areally extensive and distinct lithologic units and/or styles of aqueous alteration. The Alpha Particle X-ray Spectrometer has determined the compositions of 59 outcrop targets on untreated, brushed and abraded surfaces. Rocks in the Marathon Valley region are soft breccias composed of mm- to cm-sized darker clasts set in a lighter-toned, finegrained matrix. They are basaltic in non-volatile-element composition and compositionally similar to breccias investigated elsewhere on the rim. Alteration styles recorded in the rocks include: (1) Enrichments in Si, Al, Ti and Cr in more reddish-colored rock, consistent with leaching of more soluble cations and/or precipitation of Si +/- Al, Ti, Cr from fluids. Coprecipitation of Ge-rich phases with Si occurred in the western area only; high water:rock is indicated. Pancam multispectral observations indicate higher nanophase ferric oxide contents, but the rocks have lower Fe contents. The highly localized nature of the red zones indicate they cannot be the source of the widespread smectite signature observed from orbit. (2) Outcrops separated by approximately 65 m show common compositional changes between brushed and abraded (approximately 1 mm deep) targets: increases in S and Mg; decreases in Al, Cl and Ca. These changes are likely due to relatively recent, surface-related alteration of valley rocks and formation of surface coatings under low water:rock. (3) One target, from the center of a region of strong CRISM smectite signature, shows modest differences in composition (higher Si, K; lower Mn) compared to most Marathon Valley rocks, while another target approximately 40 cm away on the same outcrop does not; a change towards smectite bulk compositions is not observed. The smectite signature likely resulted from alteration under low water:rock such that primary minerals were partially altered to phyllosilicates, but wholesale leaching of cations by fluids did not occur.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-36819 , Geological Society of America (GSA) Annual Meeting 2016; Sep 25, 2016 - Sep 28, 2016; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of approx. 0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2 is released below 400C, much lower than traditional carbonate decomposition temperatures which can be as low as 400C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of approx. 550C for CO2, which is about 200C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be greater than 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-34487 , AGU Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Mars Exploration Rover Opportunity has been exploring Meridiani Planum for 11+ years, and is presently investigating the geology of rim segments of 22 km diameter, Noachian-aged Endeavour crater. The Alpha Particle X-ray Spectrometer has determined the compositions of a pre-impact lithology and impact breccias representing ejecta from the crater. Opportunity is now investigating the head (higher elevation, western end) of Marathon Valley. This valley cuts eastward through the central portion of the Cape Tribulation rim segment and provides a window into the lower stratigraphic record of the rim. At the head of Marathon Valley is a shallow (few 10s of cm), ovoid depression approximately 2736 m in size, named Spirit of Saint Louis, that is surrounded by approximately 20-30 cm wide zone of more reddish rocks (red zone). Opportunity has just entered a region of Marathon Valley that shows evidence for Fe-Mg smectite in Compact Reconnaissance Imaging Spectrometer for Mars spectra indicating areally extensive and distinct lithologic units and/or styles of aqueous alteration. Rocks at the head of Marathon Valley and within Spirit of Saint Louis are breccias (valley-head rocks). In some areas, layering inside Spirit of Saint Louis appears continuous with the rocks outside. The valley-head rocks are of similar, generally basaltic composition. The continuity in composition, texture and layering suggest the valley-head rocks are coeval breccias, likely from the Endeavour impact. These local breccias are similar in non-volatile-element composition to breccias investigated elsewhere on the rim. Rocks within the red zone are like those on either side in texture, but have higher Al, Si and Ge, and lower S, Mn, Fe, Ni and Zn as compared to rocks on either side. The valley-head rocks have higher S than most Endeavour rim breccias, while red zone rocks are like those latter breccias in S. Patches within the rocks outside Spirit of Saint Louis have higher Al, Si and Ge indicating red-zone-style alteration extended beyond the narrow red zone. Rocks on either side of the red zone and patches within it have the multispectral signature (determined by Panoramic Camera) of red hematite indicating an oxidizing environment. The red zone appears to be a thin alteration zone marking the border of Spirit of Saint Louis, but the origin of this morphologic feature remains obscure.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-33952 , 2015 GSA Annual Meeting; Nov 01, 2015 - Nov 04, 2015; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: The occurrence of extensive valley networks and layered deposits of phyllosilicates and sulfates during the late Noachian/Hesperian periods (approx. 3-4 Gyrs) indicates a past martian climate that was capable of maintaining liquid water at the surface. The planets climate drastically changed after these early episodes of water to a drier and colder environment during the Amazonian period (past 3.0 Gyrs). The objective of this paper is to describe aqueous alteration/weathering scenarios on Mars based on observations returned by rover and lander missions. The chemistry of most outcrops, rocks, and soils that have interacted with water has not been extensively changed from average Mars crustal basaltic composition. Little chemical variation suggests closed hydrologic systems were prominent on early Mars and/or the water/rock ratios were low. Open hydrologic systems occur at local scales, e.g., high Si and Ti rocks and soil deposits around a volcanic feature in Gusev crater. Geochemical and mineralogical indicators for aqueous alteration include jarosite and other Fe-sulfates at several locations suggesting acid-sulfate alteration conditions. High Si and Ti rocks, sediments, and soil deposits are consistent with basaltic residues extenively leached by extremely acidic fluids. Variations in the Fe/Mn ratio of fracture veins infilled with sulfate-rich materials suggest changes in redox and/or pH conditions of the migrating fluids. The increase of nanophase iron oxides and salts with depth in several soil pits escavated by the Spirit rovers wheel in Gusev crater suggests the translocation/mobolization of these phases by liquid water. This pedogenic process is the result of limited water movement through the surface sediments during the Amazonian period; however, it is likely that paleosols exist on Mars that formed during the early wetter history of the planet. Soil scientists have the opportunity to continue to (and should) be involved in the exploration of the Red planet.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN63042 , 2018-2019 International Soils Meeting; Jan 06, 2019 - Jan 09, 2019; San Deigo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Nutrients contained in sandlike material. Artificial soil provides nutrients to plants during several growing seasons without need to add fertilizer or nutrient solution. When watered, artificial soil slowly releases all materials a plant needs to grow. Developed as medium for growing crops in space. Also used to grow plants on Earth under controlled conditions or even to augment natural soil.
    Keywords: LIFE SCIENCES
    Type: MSC-21954 , NASA Tech Briefs (ISSN 0145-319X); 19; 1; P. 98
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN10014 , Journal of Geophysical Research: Planets; 118; 10; 1955–1973
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars suggests that neutral to mildly alkaline conditions prevailed during the early history of Mars. If early Mars surface geochemical conditions were neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. Why have so few carbonate deposits been detected compared to Fe/Mg smectites? Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would preclude the extensive formation of carbonate deposits. The goal of the proposed work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25435 , American Geophysical Union meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Recent studies on the interactive effects of hypobaria, low temperatures, and CO2-enriched anoxic atmospheres on the growth of 37 species of mesophilic bacteria identified 14 potential biocidal agents that might affect microbial survival and growth on the martian surface. Biocidal or inhibitory factors include (not in priority): (1) solar UV irradiation, (2) low pressure, (3) extreme desiccating conditions, (4) extreme diurnal temperature fluctuations, (5) solar particle events, (6) galactic cosmic rays, (7) UV-glow discharge from blowing dust, (8) solar UV-induced volatile oxidants [e.g., O2(-), O(-), H2O2, O3], (9) globally distributed oxidizing soils, (10) extremely high salts levels [e.g., MgCl2, NaCl, FeSO4, and MgSO4] in surficial soils at some sites on Mars, (11) high concentrations of heavy metals in martian soils, (12) likely acidic conditions in martian fines, (13) high CO2 concentrations in the global atmosphere, and (14) perchlorate-rich soils. Despite these extreme conditions several studies have demonstrated that dormant spores or vegetative cells of terrestrial microorganisms can survive simulated martian conditions as long as they are protected from UV irradiation. What has not been explored in depth are the effects of potential biotoxic geochemical components of the martian regolith on the survival and growth of microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, salts, acidifying minerals, etc.; and (2) use the simulants to conduct biotoxicity assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the analog soils.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25583 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...