ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (58)
  • INORGANIC AND PHYSICAL CHEMISTRY  (2)
  • 1
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of high resolution chromatography : HRC (ISSN 0935-6304); Volume 12; 53-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: We have used a 2-D microphysics model to study the effects of atmospheric motions on the albedo of Titan's thick haze layer. We compare our results to the observed variations of Titan's brightness with season and latitude. We use two wind fields; the first is a simple pole-to-pole Hadley cell that reverses twice a year. The second is based on the results of a preliminary Titan GCM. Seasonally varying wind fields, with horizontal velocities of about 1 cm sec-1 at optical depth unity, are capable of producing the observed change in geometric albedo of about 10% over the Titan year. Neither of the two wind fields can adequately reproduce the latitudinal distribution of reflectivity seen by Voyager. At visible wavelengths, where only haze opacity is important, upwelling produces darkening by increasing the particle size at optical depth unity. This is due to the suspension of larger particles as well as the lateral removal of smaller particles from the top of the atmosphere. At UV wavelengths and at 0.89 micrometers the albedo is determined by the competing effects of the gas the haze material. Gas is bright in the UV and dark at 0.89 micrometers. Haze transport at high altitudes controls the UV albedo and transport at low altitude controls the 0.89 micrometers albedo. Comparisons between the hemispheric contrast at UV, visible, and IR wavelengths can be diagnostic of the vertical structure of the wind field on Titan.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); Volume 119; 1; 112-29
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: We have reanalyzed the Voyager radio occultation data for Titan, examining two alternative approaches to methane condensation. In one approach, methane condensation is facilitated by the presence of nitrogen because nitrogen lowers the condensation level of a methane/nitrogen mixture. The resulting enhancement in methane condensation lowers the upper limit on surface relative humidity of methane obtained from the Voyager occultation data from 0.7 to 0.6. We conclude that in this case the surface relative humidity of methane lies between 0.08 and 0.6, with values close to 0.6 indicated. In the other approach, methane is allowed to become supersaturated and reaches 1.4 times saturation in the troposphere. In this case, surface humidities up to 100% are allowed by the Voyager occultation data, and thus the upper limit must be set by other considerations. We conclude that if supersaturation is included, then the surface relative humidity of methane can be any value greater than 0.08--unless a deep ocean is present, in which case the surface relative humidity is limited to less than 0.85. Again, values close to 0.6 are indicated. Overall, the tropospheric lapse rate on Titan appears to be determined by radiative equilibrium. The lapse rate is everywhere stable against dry convection, but is unstable to moist convection. This finding is consistent with a supersaturated atmosphere in which condensation-and hence moist convection-is inhibited.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); Volume 129; 2; 498-505
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: We have developed a new photochemical model of Titan's atmosphere which includes all the important compounds and reactions in spherical geometry from the surface to 1240 km. Compared to the previous model of Yung et al. (1984), the most significant recent change in the reactions used is the updated methane dissociation scheme (Mordaunt et al. 1993). Moreover, the transfer of the solar radiation in the atmosphere and the photolysis rates have been calculated by using a Monte Carlo code. Finally, the eddy diffusion coefficient profile is adjusted in order to fit the mean vertical distribution of HCN retrieved from millimeter groundbased observations of Tanguy et al. (1990); using new values for the boundary flux of atomic nitrogen (Strobel et al. 1992). We have run the model in both steady-state and diurnal modes, with 62 species involved in 249 reactions. There is little difference between diurnal and steady-state results. Overall our results are in a closer agreement with the abundances inferred from the Voyager infrared measurements at the equator than the Yung et al. results. We find that the catalytic scheme for H recombination invoked by Yung et al. only slightly improves the model results and we conclude that this scheme is not essential to fit observations.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Icarus (ISSN 0019-1035); 113; 1; p. 2-26
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The permanent ice covers of Antarctic lakes in the McMurdo Dry Valleys develop liquid water inclusions in response to solar heating of internal aeolian-derived sediments. The ice sediment particles serve as nutrient (inorganic and organic)-enriched microzones for the establishment of a physiologically and ecologically complex microbial consortium capable of contemporaneous photosynthesis, nitrogen fixation, and decomposition. The consortium is capable of physically and chemically establishing and modifying a relatively nutrient- and organic matter-enriched microbial "oasis" embedded in the lake ice cover.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 280; 5372; 2095-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: During the 1981 Voyager encounter, Titan's stratosphere exhibited a large thermal asymmetry, with high northern latitudes being colder than comparable southern latitudes. Given the short radiative time constant, this asymmetry would not be expected at the season of the Voyager observations (spring equinox), if the infrared and solar opacity sources were distributed symmetrically. We have investigated the radiative budget of Titan's stratosphere, using two selections of Voyager IRIS spectra recorded at symmetric northern and southern latitudes. In the region 0.1-1 mbar, temperatures are 7 K colder at 50 degrees N than at 53 degrees S and the difference reaches approximately 13 K at 5 mbar. On the other hand, the northern region is strongly enriched in nitriles and hydrocarbons, and the haze optical depth derived from the continuum emission between 8 and 15 micrometers is twice as large as in the south. Cooling rate profiles have been computed at the two locations, using the gas and haze abundances derived from the IRIS measurements. We find that, despite lower temperatures, the cooling rate profiles in the pressure range 0.15-5 mbar are 20 to 40% larger in the north than in the south, because of the enhanced concentrations of infrared radiators. Because the northern hemisphere appears darker than the southern one in the Voyager images, enhanced solar heating is also expected to take place at 50 degrees N. Solar heating rate profiles have been calculated, with two different assumptions on the origin of the hemispheric asymmetry. In the most likely case where it results from a variation in the absorbance of the haze material, the heating rates are found to be 12-15% larger at the northern location than at the southern one, a smaller increase than that in the cooling rates. If the lower albedo in the north results from an increase in the particle number density, a 55 to 75% difference is found for the pressure range 0.15-5 mbar, thus larger than that calculated for the cooling rates. Considering the uncertainties in the haze model, dynamical heat transport may significantly contribute to the meridional temperature gradients observed in the stratosphere. On the other hand, the latitudinal variation in gas and haze composition may be sufficient to explain the entire temperature asymmetry observed, without invoking a lag in the thermal response of the atmosphere due to dynamical inertia.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); Volume 113; 2; 267-76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The atmospheric circulation of Titan is investigated with a general circulation model. The representation of the large-scale dynamics is based on a grid point model developed and used at Laboratoire de Meteorologie Dynamique for climate studies. The code also includes an accurate representation of radiative heating and cooling by molecular gases and haze as well as a parametrization of the vertical turbulent mixing of momentum and potential temperature. Long-term simulations of the atmospheric circulation are presented. Starting from a state of rest, the model spontaneously produces a strong superrotation with prograde equatorial winds (i.e., in the same sense as the assumed rotation of the solid body) increasing from the surface to reach 100 m sec-1 near the 1-mbar pressure level. Those equatorial winds are in very good agreement with some indirect observations, especially those of the 1989 occultation of Star 28-Sgr by Titan. On the other hand, the model simulates latitudinal temperature contrasts in the stratosphere that are significantly weaker than those observed by Voyager 1 which, we suggest, may be partly due to the nonrepresentation of the spatial and temporal variations of the abundances of molecular species and haze. We present diagnostics of the simulated atmospheric circulation underlying the importance of the seasonal cycle and a tentative explanation for the creation and maintenance of the atmospheric superrotation based on a careful angular momentum budget.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); Volume 117; 2; 358-74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Principal science goals for exploration of Mars are to establish the chemical, isotopic, and physical state of Martian material, the nature of major surface-forming processes and their time scales, and the past and present biological potential of the planet. Many of those goals can only be met by detailed analyses of atmospheric gases and carefully selected samples of fresh rocks, weathered rocks, soils, sediments, and ices. The high-fidelity mineral separations, complex chemical treatments, and ultrasensitive instrument systems required for key measurements, as well as the need to adapt analytical strategies to unanticipated results, point to Earth-based laboratory analyses on returned Martian samples as the best means for meeting the stated objectives.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Eos (ISSN 0096-3941); Volume 70; 31; 745, 54-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Ancient Martian lakes are sites where the climatological, chemical, and possibly biological history of the planet has been recorded. Their potential to keep this global information in their sedimentary deposits, potential only shared with the polar layered-deposits, designates them as the most promising targets for the ongoing exploration of Mars in terms of science return and global knowledge about Mars evolution. Many of the science priority objectives of the Surveyor Program can be met by exploring ancient Martian lake beds. Among martian paleolakes, lakes in impact craters represent probably the most favorable sites to explore. Though highly destructive events when they occur, impacts may have provided in time a significant energy source for life, by generating heat, and at the contact of water and/or ice, deep hydrothermal systems, which are considered as favorable environments for life. In addition, impact crater lakes are changing environments, from thermally driven systems at the very first stage of their formation, to cold ice-protected potential oases in the more recent Martian geological times. Thus, they are plausible sites to study the progression of diverse microbiologic communities.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The Mars Organic Detector (MOD) was recently selected for the definition phase of the HEDS '05 (originally scheduled for '03) lander instrument package for fundamental biology and in situ resource utilization. MOD is designed to detect organic compounds in rock and soil samples directly on the surface of Mars in order to assess the biological potential of the planet. In addition, a MOD Tunable Diode Laser Spectrometer (TDLS) will provide information on desorption and decomposition temperatures, as well as the release rates and quantities of water and carbon dioxide that can be liberated from regolith samples, thereby providing the parameters needed for the design of systems for the future large-scale in situ extraction of valuable consumable resources. A MOD TDLS will also measure the atmospheric water and carbon dioxide content, as well as the atmospheric carbon dioxide isotopic composition, in order to determine whether there is an isotopic offset between atmospheric and surface carbon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 9-10; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...