ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 25 (1985), S. 541-547 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The big success of the reaction injection molding (RIM) process has brought about a marked interest in reacting polymer processing. In the present work, we study the technical feasibility of a continuous process to coat metallic conductors using reacting polymers. In the envisioned system, RIM type reactants are mixed and then injected into a tubular reactor through the center of which we pass the cable to be coated. The predictions of the mathematical model developed show that a feasible process can be designed by adequate control of the heat transfer phenomena. The process needs in general, a low reactor temperature and a high cable temperature.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 532-540 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A model for the phase distribution and evolution of the heterogeneous (suspension) polymerization of vinyl chloride is presented. Experimental information on pressure, temperature, and conversion has been obtained from a 34 liter bench reactor reproducing reaction conditions and product properties typical of industrial operation. A calculation procedure based on simple plant data is proposed for the description of the phase compositions and their evolution over the entire process. Results based on classical Flory-Huggins theory of solutions are presented and compared with existing data.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Mars rover Curiosity has encountered silica-enriched bedrock (as strata and as veins and associated halos of alteration) in the largely basaltic Murray Fm. of Mt. Sharp in Gale Crater. Alpha Particle X-ray Spectrometer (APXS) investigations of the Murray Fm. revealed decreasing Mg, Ca, Mn, Fe, and Al, and higher S, as silica increased (Fig. 1). A positive correlation between SiO2 and TiO2 (up to 74.4 and 1.7 wt %, respectively) suggests that these two insoluble elements were retained while acidic fluids leached more soluble elements. Other evidence also supports a silica-retaining, acidic alteration model for the Murray Fm., including low trace element abundances consistent with leaching, and the presence of opaline silica and jarosite determined by CheMin. Phosphate stability is a key component of this model because PO4 3- is typically soluble in acidic water and is likely a mobile ion in diagenetic fluids (pH less than 5). However, the Murray rocks are not leached of P; they have variable P2O5 (Fig. 1) ranging from average Mars (0.9 wt%) up to the highest values in Gale Crater (2.5 wt%). Here we evaluate APXS measurements of Murray Fm. bedrock and veins with respect to phosphate stability in acidic fluids as a test of the acidic alteration model for the Lower Mt. Sharp rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35224 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Alpha Particle X-ray spectrometer (APXS) on the Curiosity rover in Gale Crater [1] is the 4th such instrument to have landed on Mars [2]. Along the rover's traverse down-section toward Glenelg (through sol 102), the APXS has examined four rocks and one soil [3]. Gale rocks are geochemically diverse and expand the range of Martian rock compositions to include high volatile and alkali contents (up to 3.0 wt% K2O) with high Fe and Mn (up to 29.2% FeO*).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27938 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; TheWoodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-30
    Description: Characterizing the history of aqueous activity at the martian surface has been an objective of the Mars Exploration Rovers (MER) and the Mars Science Laboratory (MSL). Although the geologic context of the three landing sites are different, comparisons across the datasets can provide greater insight than using data from one mission alone. The Alpha Particle X-ray Spectrometer (APXS) is common to all three rovers (Spirit at Gusev crater, Opportunity at Meridiani Planum, and Curiosity at Gale crater) and provides a consistent basis for these comparisons. Soil and Dust: Fine grained basaltic soils and dust are remarkably uniform in chemical composition across multiple landing sites. These similarities in the concentrations of major, minor, and a few trace elements (Fig. 1) are indicative of planet-wide consistency in the composition of source materials for the soils. S and Cl vary by a factor of two in the soil and dust, but there is no clear association with any bulk cation (e.g., no correlation between S and total Ca, Mg, or Fe in soils). These volatile elements, however, are clearly associated with the nanophase-ferric iron component in the soil established by Mssbauer spectroscopy [1,2]. S and Cl likely originated as acidic species from volcanic out-gassing and subsequently coalesced on dust and sand grain surfaces, possibly with an affinity towards Fe3+ sites. Importantly, given the mobility of S and Cl in aqueous exposures, soil samples maintaining the typical molar S/Cl ratio of ~3.7:1 indicate minimal interactions with liquid water after the addition of S and Cl. In contrast to this well-established baseline, soil samples have been discovered at all three landing sites with atypical S/Cl ratios (e.g., subsurface soils), indicative of a more complex aqueous history.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN70395 , International Conference on Mars; Jul 22, 2019 - Jul 25, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The primary MER objectives have been successfully completed. The total integration time of all MB measurements exceeds the duration of the primary 90-sols-mission for Spirit's MB spectrometer, and approaches this value for Opportunity's MB spectrometer. Both MB spectrometers continue to accumulate valuable scientific data after three years of operation (data is available for download [13]) The identification of aqueous minerals such as goethite in Gusev crater and jarosite at Meridiani Planum by the MER Mossbauer spectrometers is strong evidence for past water activity at the two landing sites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: European Planetary Science Congress 2007; Aug 19, 2007 - Aug 24, 2007; Potsdam; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The two Miniaturized Moessbauer Spectrometers (MIMOS II) on board the two Mars Exploration Rovers Spirit and Opportunity have now been collecting important scientific data for more than four years. The spectrometers provide information about Fe-bearing mineral phases and determine Fe oxidation states. The total amount of targets analized exceeds 600, the total integration time exceeds 260 days for both rovers. Since landing, more than five half-lives of the Co-57 MB sources have past (intensity at the time of landing approx. 150 mCi). Current integration times are about 50 hours in order to achieve reasonable statistics as opposed to 8 hours at the beginning of the mission. In total, 13 different mineral phases were detected: Olivine, pyroxene, hematite, magnetite and nanophase ferric oxide were detected at both landing sites. At Gusev, ilmenite, goethite, a ferric sulfate phase and a yet unassigned phase (in the rock Fuzzy Smith) were detected. At Meridiani, jarosite, metallic iron in meteoritic samples (kamacite), troilite, and an unassigned ferric phase were detected. Jarosite and goethite are of special interest, as these minerals are indicators for water activity. In this abstract, an overview of Moessbauer results will be given, with a focus on data obtained since the last martian winter. The MER mission has proven that Moessbauer spectroscopy is a valuable tool for the in situ exploration of extraterrestrial bodies and for the study of Febearing samples. The experience gained through the MER mission makes MIMOS II a obvious choice for future missions to Mars and other targets. Currently, MIMOS II is on the scientific payload of two approved future missions: Phobos Grunt (Russian Space Agency; 2009) and ExoMars (European Space Agency; 2013).
    Keywords: Lunar and Planetary Science and Exploration
    Type: 39th Lunar and Planetary Science Conference; Mar 10, 2008 - Mar 14, 2008; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Light-toned, subsurface soil deposits have been excavated by the Mars Exploration Rover (MER) Spirit in six distinct locations along its traverse across the Columbia Hills of Gusev Crater. Samples at two of these sites have been analyzed in detail by the M ssbauer (MB) and Alpha Particle X-ray Spectrometers (APXS), providing information on iron mineralogy and elemental chemistry, respectively. These soils are referred to as "Paso Robles" class deposits.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...