ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 1161-1170 
    ISSN: 0006-3592
    Keywords: bacterial colonization ; kinetic rates ; solidwater interfaces ; Pseudomonas aeruginosa ; Pseudomonas fluorescens ; image analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The processes leading to bacterial colonization on solidwater interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m-2. The surface roughness varied among the substrata from 0.002 μm (for silicon) to 0.015 μm (for copper). Surface free energies varied from 25.1 dynes cm-1 for silicon to 31.2 dynes cm-1 for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varried by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 263-269 
    ISSN: 0006-3592
    Keywords: microbial souring ; sulfate reduction ; porous media ; kinetics ; biotransformation ; oil reservoir ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Microbial souring (H2S production) in porous media was investigated in an anaerobic upflow porous media reactor at 60°C using microbial consortia obtained from oil reservoirs. Multiple carbon sources (formate, acetate, propionate, iso- and n-butyrates) found in reservoir waters as well as sulfate as the electron acceptor was used. Kinetics and rates of souring in the reactor system were analyzed. Higher volumetric substrate consumption rates (organic acids and sulfate) and a higher volumetric H2S production rate were found at the from part of the reactor column after H2S production had stabilized. Concentration gradients for the substrates (organic acids and sulfate) and H2S were generated along the column. Biomass accumulation throughout the entire column was observed. The average specific sulfate reduction rate (H2S production rate) in the present reactor after H2S production had stabilized was calculated to be 11062 ±2.22 mg sulfate-S/day g biomass. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 267-274 
    ISSN: 0006-3592
    Keywords: microbial souring ; sulfate reduction ; porous media ; kinetics ; stoichiometry ; transport phenomena ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H2S) in oil field porous media. The reactor was a packed bed (50 × 5.5 cm) tubular reactor. Sea sand (140 to 375 μm) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Landing space craft rocket plume exhaust interactions with the regolith surfaces on the Moon and Mars will result in cratering and regolith particle ejecta traveling at velocities up to 2,000 meters per second in the vacuum surroundings. This phenomenon creates hazards for the spacecraft that is landing or launching and may also cause damage to surrounding assets, personnel and infrastructure. One potential solution to this issue is to construct vertical takeoff and vertical landing (VTVL) pad infrastructure systems which will mitigate these rocket plume exhaust effects. Concepts will be presented for the construction and maintenance of such VTVL pads in lunar and martian environments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-E-DAA-TN65133 , Caltech Engineering Mechanics Institute Conference (EMI 2019); Jun 18, 2019 - Jun 21, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: There are vast amounts of resources in the solar system that will be useful to humans in space and possibly on Earth. None of these resources can be exploited without the first necessary step of extra-terrestrial mining. The necessary technologies for tele-robotic and autonomous mining have not matured sufficiently yet. The current state of technology was assessed for terrestrial and extraterrestrial mining and a taxonomy of robotic space mining mechanisms was presented which was based on current existing prototypes. Terrestrial and extra-terrestrial mining methods and technologies are on the cusp of massive changes towards automation and autonomy for economic and safety reasons. It is highly likely that these industries will benefit from mutual cooperation and technology transfer.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2013-186 , International Space University Space Studies Program - SSP13; Jul 15, 2013 - Jul 19, 2013; Strasbourg; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2012-099 , KSC-2012-099R , Space Resources Roundtable; Jun 04, 2012 - Jun 07, 2012; Golden, CO; United States|Earth and Space 2012; Apr 15, 2012 - Apr 18, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26189 , ASCE Earth and Space 2012 Conference; Apr 16, 2012 - Apr 18, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Regolith is abundant on extra-terrestrial surfaces and is the source of many resources such as oxygen, hydrogen, titanium, aluminum, iron, silica and other valuable materials, which can be used to make rocket propellant, consumables for life support, radiation protection barrier shields, landing pads, blast protection berms, roads, habitats and other structures and devices. Recent data from the Moon also indicates that there are substantial deposits of water ice in permanently shadowed crater regions and possibly under an over burden of regolith. The key to being able to use this regolith and acquire the resources, is being able to manipulate it with robotic excavation and hauling machinery that can survive and operate in these very extreme extra-terrestrial surface environments. In addition, the reduced gravity on the Moon, Mars, comets and asteroids poses a significant challenge in that the necessary reaction force for digging cannot be provided by the robot's weight as is typically done on Earth. Space transportation is expensive and limited in capacity, so small, lightweight payloads are desirable, which means large traditional excavation machines are not a viable option. A novel, compact and lightweight excavation robot prototype for manipulating, excavating, acquiring, hauling and dumping regolith on extra-terrestrial surfaces has been developed and tested. Lessons learned and test results will be presented including digging in a variety of lunar regolith simulant conditions including frozen regolith mixed with water ice.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2012-304 , IEEE Aerospace Conference; Mar 02, 2013 - Mar 09, 2013; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: High launch costs and mission requirements drive the need for low mass excavators with mobility platforms, which in turn have little traction and excavation reaction capacity in low gravity environments. This presents the need for precursor and long term future missions with low mass robotic mining technology to perform In-Situ Resource Utilization (ISRU) tasks. This paper discusses a series of experiments that investigate the effectiveness of a percussive digging device to reduce excavation loads and thereby the mass of the excavator itself. A percussive mechanism and 30" wide pivoting bucket were attached at the end of the arm simulating a basic backhoe with a percussion direction tangent to the direction of movement. Impact energies from 13.6J to 30.5J and frequencies from 0 BPM to 700 BPM were investigated. A reduction in excavation force of as much as 50% was achieved in this experimental investigation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2012-205R , KSC-2012-205 , 2013 IEEE Aerospace Conference; Mar 02, 2013 - Mar 09, 2013; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Human and robotic partnerships to realize space goals can enhance space missions and provide increases in human productivity while decreasing the hazards that the humans are exposed to. For lunar exploration, the harsh environment of the moon and the repetitive nature of the tasks involved with lunar outpost construction, maintenance and operation as well as production tasks associated with in-situ resource utilization, make it highly desirable to use robotic systems in co-operation with human activity. A human lunar outpost is functionally examined and concepts for selected human/robotic tasks are discussed in the context of a lunar outpost which will enable the presence of humans on the moon for extended periods of time.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IAC-06-A5.2.09 , KSC-2006-138 , 57th International Astronautical Congress (IAC); Oct 02, 2006 - Oct 06, 2006; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...