ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-07
    Description: A series of experiments was performed on a 1.8-m-diam model rotor in hover for the principal purpose of investigating the lead-lag stability of isolated bearingless rotors. Incidental to those tests, at least three types of pitch-flap flutter were encountered. Type 1 flutter occurred approximately at the second flap-mode frequency on both two-and three-bladed rotors for both small and large pitch angles and appeared to be a classic pitch-flap flutter. Type 2 flutter showed mostly torsional motion and was seen on both two- and three-bladed rotors. Type 3 flutter was a regressing flap flutter that occurred for only the three-bladed rotor configurations and appears to be a wake excited flutter. Although flutter occurred on a number of different configurations, no rotor parameters were identified that were clearly stabilizing or destabilizing.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA. Ames Research Center Rotorcraft Dynamics 1984; p 69-88
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: JPL's missions to Mars have revealed factors that have an adverse impact on the performance of Mars Surface Solar Arrays. These factors included a spectrum shift toward the red wavelengths, atmospheric scattering and absorption and an accumulation of Mars surface dust on the arrays. All of these factors will reduce the power generated from state of the art triple junction solar cells used by earth orbiting satellites. This paper will report the results of JPL supported work conducted by US solar array manufacturers to increase the performance of solar arrays for future Mars surface missions. JPL awarded four vendors contracts to evaluate methods of improving power generation on the surface of Mars. These four contracts cover the redesign of the existing triple junction solar cell, modifying solar simulator output to match the Mars surface spectrum and techniques to control or remove dust from the surface of the arrays. The methodology and results of this evaluation will be presented in this paper.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 30th IEEE PV Specialists Conference 2003; Osaka; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Description: We present observations of RD J030117+002025, a quasar at z = 5.50 discovered from deep, multi-color, ground-based observations covering 74 arcmin(sup 2).
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mingling Planetary Microbes: Protecting Alien Ecosystems; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The NASA/JPL 2003/2005 Mars Sample Return (MSR) Missions will each have a sample return canister that will be filled with samples cored from the surface of MARS. These spherical canisters will be 14.8 cm in diameter and must be powered only by solar cells on the surface and must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the SOAP program developed by JPL. The requirements and geometry for a solar array on a sphere are unique and place special constraints on the design. These requirements include 1) accommodating a lid for sample loading into the canister, surface area was restricted from use on the Northern pole of the spherical canister. 2) minimal cell surface coverage (maximum cell efficiency), less than 40%, for recovery vehicle to locate the canister by optical techniques. 3) a RF transmission during 50% of MARS orbit time on any spin axis, which requires optimum circuit placement of the solar cell onto the spherical canister. The best configuration would have been a 4.5 volt round cell, but in the real world we compromised with six triangular silicon cells connected in series to form a hexagon. These hexagon circuits would be mounted onto a flat facet cut into the spherical canister. The surface flats are required in order to maximize power, the surface of the cells connected in series must be at the same angle relative to the sun. The flat facets intersect each other to allow twelve circuits evenly spaced just North and twelve circuits South of the equator of the spherical canister. Connecting these circuits in parallel allows sufficient power to operate the transmitter at minimum solar exposure, Northern pole of the canister facing the sun. Additional power, as much as 20%, is also generated by the circuits facing MARS due to albedo of MARS.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Photovoltaic Research and Technology; Aug 31, 1999 - Sep 02, 1999; Cleveland, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50 Angstroms) with unprecedented sensitivity-effective areas of greater than 500 sq cm and spectral resolution greater than 2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocked flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (~100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43826 , Space Telescopes and Instrumentation 2016; Edinburgh; United Kingdom|Proceedings of SPIE (ISSN 0277-786X); 9905; 99054M
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...