ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science; Volume 307; 1255-1259
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: The detection of impulsive low-frequency (10 to 80 kHz) radio signals, and separate very-low-frequency (approx. 100 Hz) radio 'whistler' signals provided the first evidence for lightning in the atmosphere of Venus. Later, a small number of impulsive high- frequency (100 kHz to 5.6 MHz) radio signals, possibly due to lightning, were also detected. The existence of lightning at Venus has, however, remained controversial. Here we report the results of a search for high-frequency (0.125 to 16 MHz) radio signals during two close fly-bys of Venus by the Cassini spacecraft. Such signals are characteristic of terrestrial lightning, and are commonly heard on AM (amplitude-modulated) radios during thunderstorms. Although the instrument easily detected signals from terrestrial lightning during a later fly-by of Earth (at a global flash rate estimated to be 70/s, which is consistent with the rate expected for terrestrial lightning), no similar signals were detected from Venus. If lightning exists in the venusian atmosphere, it is either extremely rare, or very different from terrestrial lightning.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature; Volume 409; 313-315
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: Limited single-spacecraft observations of Jupiter's magnetopause have been used to infer that the boundary moves inward or outward in response to variations in the dynamic pressure of the solar wind. At Earth, multiple-spacecraft observations have been implemented to understand the physics of how this motion occurs, because they can provide a snapshot of a transient event in progress. Here we present a set of nearly simultaneous two-point measurements of the jovian magnetopause at a time when the jovian magnetopause was in a state of transition from a relatively larger to a relatively smaller size in response to an increase in solar-wind pressure. The response of Jupiter's magnetopause is very similar to that of the Earth, confirming that the understanding built on studies of the Earth's magnetosphere is valid. The data also reveal evidence for a well-developed boundary layer just inside the magnetopause.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature: Letters to Nature; Volume 415; 991-994
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Letters to Nature; Volume 415; 985-987
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: During the Galileo inbound pass through the Io torus the plasma wave insturment detected intervals of enhanced whistler-mode emissions.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysical Research Letters; Volume 36; L10203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A radio source in the outer heliosphere has been detected by the plasma wave receivers on Voyagers 1 and 2. The radio emission is observed in the frequency range 2-3 kHz, and is above the local solar wind electron plasma frequency whenever supporting plasma density data are available. The maximum spectral density of the emission recorded is about 10 to the -14th V-squared/m-squared/Hz. The bandwidth of the radio noise is about 1 kHz. Possible sources include continuum radiation from Jupiter's distant magnetotail and radiation at the second harmonic of the plasma frequency at the heliopause. If the latter interpretation is correct, these data represent the first remote observations of the heliopause.
    Keywords: ASTROPHYSICS
    Type: Nature (ISSN 0028-0836); 312; 27-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-27
    Description: The LF radio emission of the heliospheric cavity is discussed, summarizing Voyager measurement data. The solar wind is considered to be the outer layer of the solar atmosphere, and its interaction with the interstellar medium is examined in detail. Typical data are presented graphically, and theoretical models proposed to explain the emission are reviewed. It is suggested that the emission may originate at the terminal shock or heliopause, thus providing a means of estimating its location.
    Keywords: ASTROPHYSICS
    Type: COSPAR Colloquium; Sept. 19-22, 1989; Warsaw; Poland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The impulsive noise that the plasma wave and radio astronomy instruments detected during the Voyager 2 swing by Saturn was attributed to dust grains striking the spacecraft. This report presents a reanalysis of the dust impacts recorded by the plasma wave instrument using an improved model for the response of the electric antenna to dust impacts. The fundamental assumption used in this analysis is that the voltage induced on the antenna is proportional to the mass of the impacting grain. Using the above assumption and the antenna response constants used at Uranus and Neptune, the following conclusions can be reached. The primary dust distribution consists of a 'disk' of particles that coincides with the equator plane and has a north-south thickness of 2-Delta zeta = 962 km. A less dense 'halo' with a north-south thickness of 2-Delta zeta = 3376 km surrounds the primary distribution. The dust particle sizes are of the order of 10 microns, assuming a mass density of 1 g/cu cm. The corresponding particle masses are of the order of 10(exp -9) g, and maximum number densities are of the order of 10(exp -2)/cu m. Most likely, the G ring is the dominate source since the particles were observed very close to that ring, namely at 2.86 R(sub S). Other sources, like nearby moons, are not ruled out especially when perturbations due to electromagnetic forces are included. The calculated optical depth differs by about a factor of 2 from photometric studies. The current particle masses, radii, and the effective north-south thickness of the particle distribution are larger than what Gurnett et al. (1983) reported by about 2, 1, and 1 orders of magnitude, respectively. This is attributed to the fact that the collection coefficient used in this study is smaller than what was used in Gurnett et al.'s earlier publication.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A2; p. 2261-2270
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...