ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-10-05
    Description: Martian meteorite (shergottite) impact melt glasses that contain high concentrations of martian atmospheric noble gases and show significant variations in Sr-87/Sr-86 isotopic ratios are likely to contain Martian surface fines mixed with coarser regolith materials. The mixed soil constituents were molten due to shock at the time of meteoroid impact near the Martian surface and the molten glass got incorporated into the voids and cracks in some shergottite meteorites. Earlier, Rao et al. found large enrichments of sulfur (sulfate) during an electron-microprobe study of several impact melt glass veins and pods in EET79001,LithC thin sections. As sulfur is very abundant in Martian soil, these S excesses were attributed to the mixing of a soil component containing aqueously altered secondary minerals with the LithC precursor materials prior to impact melt generation. Recently, we studied additional impact melt glasses in two basaltic shergottites, Zagami and Shergotty using procedures similar to those described. Significant S enrichments in Zagami and Shergotty impact melt glass veins similar to the EET79001, LithC glasses were found. In addition, we noticed the depletion of the mafic component accompanied by the enrichment of felsic component in these impact melt glass veins relative to the bulk host rock in the shergottites. To explain these observations, we present a model based on comminution of basaltic rocks due to meteoroid bombardment on martian regolith and mechanical fractionation leading to enrichment of felsics and depletion of mafics in the fine grained dust which is locally mobilized as a result of saltation and deflation due to the pervasive aeolian activity on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites; LPI-Contrib-1153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Martian meteorite (shergottite) impact melt glasses that contain high concentrations of martian atmospheric noble gases and show significant variations in Sr-87/Sr-86 isotopic ratios are likely to contain Martian surface fines mixed with coarser regolith materials. The mixed soil constituents were molten due to shock at the time of meteoroid impact near the Martian surface and the molten glass got incorporated into the voids and cracks in some shergottite meteorites. Earlier, Rao et al. found large enrichments of sulfur (sulfate) during an electron-microprobe study of several impact melt glass veins and pods in EET79001,LithC thin sections. As sulfur is very abundant in Martian soil, these S excesses were attributed to the mixing of a soil component containing aqueously altered secondary minerals with the LithC precursor materials prior to impact melt generation. Recently, we studied additional impact melt glasses in two basaltic shergottites, Zagami and Shergotty using procedures similar to those described by Rao et al. Significant S enrichments in Zagami and Shergotty impact melt glass veins similar to the EET79001, LithC glasses were found. In addition, we noticed the depletion of the mafic component accompanied by the enrichment of felsic component in these impact melt glass veins relative to the bulk host rock in the shergottites. To explain these observations, we present a model based on comminution of basaltic rocks due to meteroid bombardment on martian regolith and mechanical fractionation leading to enrichment of felsics and depletion of mafics in the fine grained dust which is locally mobilized as a result of saltation and deflation due to the pervasive aeolian activity on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites; 49-50; LPI-Contrib-1134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: Based on large heavy isotope enrichments in Ne and Ar in Martian atmosphere, we suggest that sulfur isotopes may show similar isotopic enrichments in atmosphere and surface samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: Some impact-melt glasses in shergottite meteorites contain large abundances of martian atmospheric noble gases with high (129)Xe/(132)Xe ratios, accompanied by varying (87)Sr/(86)Sr (initial) ratios. These glasses contain Martian Soil Fines (MSF) probably from young volcanic terrains such as Tharsis or Elysium Mons. The composition of the MSF bearing samples is different from the average bulk composition of the host rock. These samples show the following charecteristics: a) simultaeneous enrichment of the felsic component and depletion of the mafic component relative to the host phase and b) significant secondary sulfur/sulfate excesses over the host material. The degree of enrichment and associated depletion varies from one sample to another. Earlier, we found large enrichments of felsic (Al, Ca, Na and K) component and depletion of mafic (Fe, Mg, Mn and Ti) component in several impact melt glass veins and pods of samples ,77 ,78 , 18, and ,20A in EET79001 accompanied by large sulfur/sulfate excesses. Based on these results, we proposed a model where the comminution of basaltic rocks takes place by meteoroid bombardment on the martian surface, leading to the generation of fine-grained soil near the impact sites. This fine-grained soil material is subsequently mobilized by saltation and deflation processes on Mars surface due to pervasive aeolian activity. This movement results in mechanical fractionation leading to the felsic enrichment and mafic depletion in the martian dust. We report, here, new data on an impact-melt inclusion ,507 (PAPA) from EET79001, Lith B and ,506 (ALPHA) from EET79001, Lith A and compare the results with those obtained on Shergotty impact melt glass (DBS).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: The Cl/Br ratios in fracture-filling materials in veins in Nakhla olivine was determined using x-ray microprobe (Br) and EDX (Cl) techniques. The Cl/Br ratio of 55 (standard deviation: 13) shows that the secondary altered material is pristine, extraterrestrial and akin to the Martian soil. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIII; LPI-Contrib-1109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: We calculate that approximately 10% of martian atmospheric Kr-80 formed by neutron capture on Mars in approx. 0.5 Ga. The regolith contains even larger amounts of n-capture Kr-80 and Ar-36, which may provide clues to the evolution of the martian regolith and atmosphere. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXII; LPI-Contrib-1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: Impact-melt glasses, rich in Martian atmospheric gases, contain Martian soil fines (MSF) mixed with other coarse-grained regolith fractions which are produced during impact bombardment on Mars surface. An important characteristic of the MSF fraction is the simultaneous enrichment of felsic component accompanied by the depletion of mafic component relative to the host phase in these glasses. In addition, these glasses yield large sulfur abundances due to the occurrence of secondary mineral phases such as sulfates produced during acid-sulfate weathering of the regolith material near the Martian surface. Sulfurous gases released into atmosphere by volcanoes on Mars are oxidized to H2SO4 which deposit back on the surface of Mars as aerosol particles. Depending on the water availability, sulfuric acids dissolve into solutions which aggressively decompose the Fe-Mg silicates in the Martian regolith. During chemical weathering, structural elements such as Fe, Mg and Ca (among others) are released into the transgressing solutions. These solutions leach away the soluble components of Mg, Ca and Na, leaving behind insoluble iron as Fe3(+) hydroxysulfate mixed with poorly crystalline hydroxide- precipitates under oxidizing conditions. In this study, we focus on the elemental distribution of FeO and SO3 in the glass veins of EET79001, 507 sample, determined by Electron Microprobe and FE SEM measurements at JSC. This glass sample is an aliquot of a bigger glass inclusion ,104 analysed by where large concentrations of Martian atmospheric noble gases are found.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-8383 , Lunar and Planetary Science XXXV: Martian Meteorites: Chemical Weathering; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Power Workshop; Apr 19, 2004 - Apr 22, 2004; Manhattan Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...