ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Martian basaltic meteorites Y980459 and QUE94201 (henceforth referred to as Y98 and QUE respectively) are thought to represent magmatic liquid compositions, rather than being products of protracted crystallization and accumulation like the majority of other martian meteorites. Both meteorite compositions have been experimentally crystallized at 1 bar, and liquidus phases were found to match corresponding mineral core compositions in the meteorites, consistent with the notion that these meteorites represent bona fide melts. They also represent the most primitive and most evolved basaltic martian samples, respectively. Y98 has Mg# (molar Mg/Mg+Fe) approximates 65, and lacks plagioclase; whereas QUE has Mg# approximates 40, and lacks olivine. However they share important geochemical characteristics (e.g. superchondritic CaO/Al2O3, very high epsilon(sub Nd) and low Sr-87/Sr-87) that suggest they sample a similar highly depleted mantle reservoir. As such, they represent likely endmembers of martian magmatic liquid compositions, and it is natural to seek petrogenetic linkages between the two. We make no claim that the actual meteorites themselves share a genetic link (the respective ages rule that out); we are exploring only in general whether primitive martian liquids like Y98 could evolve to liquids resembling QUE. Both experimental and computational efforts have been made to determine if there is indeed such a link. Recent petrological models at 1 bar generated using MELTS suggest that a QUE-like melt can be derived from a parental melt with a Y98 composition. However, experimental studies at 1 bar have been less successful at replicating this progression. Previous experimental crystallization studies of Y98 by our group at 0.5 GPa have produced melt compositions approaching that of QUE, although these results were complicated by the presence of small, variable amounts of H2O in some of the runs owing to the use of talc/pyrex experimental assemblies. Therefore we have repeated the four experiments, augmented with additional runs, all using BaCO3 cell assemblies, which are devoid of water, and these new experiments supersede those reported earlier. Here we report results of experiments simulating equilibrium crystallization; fractional crystallization experiments are currently underway.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25840 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Mars Exploration Rover Opportunity has spent over six years exploring the Martian surface near its landing site at Meridiani Planum. Meridiani bedrock observed by the rover is largely characterized by sulfate-rich sandstones and hematite spherules, recording evidence of ancient aqueous environments [1]. The region is a deflationary surface, allowing hematite spherules, fragments of bedrock, and "cobbles" of foreign origin to collect loosely on the surface. These cobbles may be meteorites (e.g., Barberton, Heat Shield Rock, Santa Catarina) [2], or rock fragments of exotic composition derived from adjacent terranes or from the subsurface and delivered to Meridiani Planum as impact ejecta [3]. The cobbles provide a way to better understand Martian meteorites and the lithologic diversity of Meridiani Planum by examining the various rock types located there. In the summer of 2007, a global dust storm on Mars effectively disabled Opportunity's Miniature Thermal Emission Spectrometer (Mini-TES), which served as the Athena Science Team s primary tool for remotely identifying rocks of interest on a tactical timescale for efficient rover planning. While efforts are ongoing to recover use of the Mini-TES, the team is currently limited to identifying rocks of interest by visual inspection of images returned from Opportunity's Panoramic Camera (Pancam). This study builds off of previous efforts to characterize cobbles at Meridiani Planum using a database of reflectance spectra extracted from Pancam 13-Filter (13F) images [3]. We analyzed the variability of rock spectra in this database and identified physical characteristics of Martian rocks that could potentially account for the observed variance. By understanding such trends, we may be able to distinguish between rock types at Meridiani Planum and regain the capability to remotely identify locally unique rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0239 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...