ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26565 , Concepts and Approaches for Mars Exploration; Jun 12, 2012 - Jun 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Curiosity rover investigated the mineralogy of the Sheepbed mudstone member of the Yellowknife Bay formation in Gale crater. Data from the Chemistry and Mineralogy (CheMin) X-ray diffractometer (XRD) helped identify phyllosilicates in the two drilled samples, John Klein and Cumberland. These patterns showed peaks at low angles, consistent with (001) peaks in 2:1 swelling phyllosilicates [1]. Evolved gas analyses (EGA) by the Sample Analysis at Mars (SAM) instrument of these samples confirmed the presence of phyllosilicates through the release of H2O at high temperatures, consistent with dehydroxylation of octahedral OH in phyllosilicates [2]. CheMin data for the phyllosilicates at John Klein and Cumberland show that they are structurally similar in that their (02l) peaks are near 22.5 deg 2theta, suggesting both samples contain trioctahedral 2:1 phyllosilicates [1]. However, the positions of the (001) peaks differ: the phyllosilicate at John Klein has its (001) peak at 10 Angstroms, whereas the phyllosilicate at Cumberland has an (001) peak at 14 Angstroms. Such differences in (001) dspacings can be ascribed to the type of cation in the interlayer site [3]. For example, large monovalent cations (e.g., K(+)) have low hydration energies and readily lose their H2O of hydration, whereas small divalent cations (e.g., Mg(2+)) have high energies of hydration and retain H2O in the phyllosilicate interlayers [3,4]. The goal of this study is to determine whether differences in the interlayer cation composition can explain the CheMin data from John Klein and Cumberland and to use this knowledge to better understand phyllosilicate formation mechanisms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30371 , Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Recent discoveries by the Mars Exploration Rovers, Mars Express, Mars Odyssey, and Mars Reconnaissance Orbiter spacecraft include multiple, tantalizing astrobiological targets representing both past and present environments on Mars. The most desirable path to Mars Sample Return (MSR) would be to collect and return samples from that site which provides the clearest examples of the variety of rock types considered a high priority for sample return (pristine igneous, sedimentary, and hydrothermal). Here we propose an MSR architecture in which the next steps (potentially launched in 2018) would entail a series of smaller missions, including caching, to multiple landing sites to verify the presence of high priority sample return targets through in situ analyses. This alternative architecture to one flagship-class sample caching mission to a single site would preserve a direct path to MSR as stipulated by the Planetary Decadal Survey, while permitting investigation of diverse deposit types and providing comparison of the site of returned samples to other aqueous environments on early Mars
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26522 , Mars Exploration Meeting; Jun 12, 2012 - Jun 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustratedby the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scienti-c goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussedthroughout this paper : rst, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopiccomposition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk OH ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to mostextrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Dierent mission architectures are envisaged, which would benet from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars of atmospheric pressure. We rally discuss the science payload required on a Saturn probe to match the measurement requirements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19065 , Planetary and Space Sciences Journal; 104; A; 29-47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-31342 , International Conference on Mars; Jul 14, 2014 - Jul 18, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The Mars Science Laboratory rover Curiosity investigated sedimentary rocks that were deposited in a diversity of fluvio-lacustrine settings. The entire science payload was employed to characterize the mineralogy and chemistry of the Sheepbed mudstone at Yellowknife Bay and the Windjana sandstone at the Kimberley. Data from the CheMin instrument, a transmission Xray diffractometer, were used to determine the quantitative mineralogy of both samples. The Sheepbed mudstone contains detrital basaltic minerals, calcium sulfates, iron oxides or hydroxides, iron sulfides, trioctahedral smectite, and amorphous material. The mineral assemblage and chemical data from APXS suggest that the trioctahedral smectite and magnetite formed authigenically as a result of alteration of olivine. The apparent lack of higher-grade phyllosilicates (e.g., illite and chlorite) and the presence of anhydrite indicate diagenesis at ~50- 80 C. The mineralogy of the Windjana sandstone is different than the Sheepbed mudstone. Windjana contains significant abundances of K-feldspar, low- and high-Ca pyroxenes, magnetite, phyllosilicates, and amorphous material. At least two distinct phyllosilicate phases exist: a 10 phase and a component that is expanded with a peak at ~11.8 . The identity of the expanded phase is currently unknown, but could be a smectite with interlayer H2O, and the 10 phase could be illite or collapsed smectite. Further work is necessary to characterize the phyllosilicates, but the presence of illite could suggest that Windjana experienced burial diagenesis. Candidates for the cementing agents include fine-grained phyllosilicates, Fe-oxides, and/or amorphous material. Interpretations of CheMin data from the Windjana sandstone are ongoing at the time of writing, but we will present an estimate of the composition of the amorphous material from mass balance calculations using the APXS bulk chemistry and quantitative mineralogy from CheMin.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-31874 , American Geophysical Union (AGU) Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The CheMin X-ray diffraction (XRD) instrument onboard the Mars Science Laboratory rover Curiosity in Gale Crater, Mars, discovered smectite in drill fines of the Sheepbed mudstone at Yellowknife Bay (YNB). The mudstone has a basaltic composition, and the XRD powder diffraction pattern shows smectite 02l diffraction bands peaking at 4.59 A for targets John Klein and Cumberland, consistent with tri-octahedral smectites (saponite). From thermal analysis, the saponite abundance is ~20 wt. %. Among terrestrial analogues we have studied, ferrian saponite from Griffith Park (Los Angeles, CA) gives the best match to the position of the 02l diffraction band of YNB saponites. Here we describe iron-rich saponites from a terrestrial perspective, with a focus on Griffith saponite, and discuss their implications for the mineralogy of Sheepbed saponite and its formation pathways. Iron-rich saponite: Iron-rich saponite on the Earth is recognized as a low-temperature (〈100 C), authigenic alteration product of basalt [e.g., 4-16]. In the discussion that follows, we reference the position of the 02l band because it is a measure of the unit cell 'b' dimension of the octahedral layer and thus the cations (including Fe redox state) in the octahedral layer. Ordinarily, the 06l band near 1.5 A is used to determine the 'b' dimension of smectite, but this band is not accessible with MSL CheMin instrument. For reference, a ferrosaponite (i.e., Fe2+ saponite) studied by [15] has a 02l spacing of 4.72 A and Fe3+/Fe = 0.27 [15]. Samples of terrestrial ferrosaponite, however, are reported to oxidize on the timescale of days when removed from their natural environment and not protected from oxidation. The Griffith saponite is Mg-rich ferrian saponite, and sample AMNH 89172 has an 02l spacing of 4.59 A (same as the Sheepbed saponites) and Fe3+/Fe = 0.64 [3]. This similarity suggests that Sheepbed saponites are ferrian (incompletely oxidized ferrosaponite). More oxidized Griffith saponites (Fe3+/Fe 〉 0.90) have somewhat smaller 02l d-spacings and also show Mossbauer evidence for an XRD amorphous Fe-bearing phase (e.g., ferrihydrite, hisingerite, superparamagnetic ferric oxides, etc.). The Griffith saponite occurs as vesicle fills, as replacements of olivine, and as replacements of mesostasis (basaltic glass). Similar occurrence modes are reported elsewhere. Hisingerite has been proposed by [13] as the alteration product of ferrian saponite whose precursor by oxidation was ferrosaponite.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-31327 , International Conference on Mars; Jul 14, 2014 - Jul 18, 2014; Pasadena, California; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: NASA's Dawn spacecraft entered orbit around asteroid (4) Vesta in July 2011 for a yearlong mapping orbit. The surface of Vesta as imaged by the Dawn Framing Camera (FC) revealed a surface that is unlike any asteroid we have visited so far with a spacecraft. Albedo and color variations on Vesta are the most diverse in the asteroid belt with a majority of these linked to distinct compositional units on the asteroid s surface. FC discovered dark material on Vesta. These low albedo surface features were first observed during Rotational Characterization 3 phase at a resolution of approx. 487 m/pixel. Here we explore the composition and possible meteoritical analogs for the dark material on Vesta.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26602 , 75th Annual Meeting of the Meteorical Society; Aug 12, 2012 - Aug 17, 2012; Cairns; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-13
    Description: The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14〈Z〈92) from scooped soil samples and drilled rock powders collected on the Mars surface. The geometry of the source, sample, and detector is shown. A transmission geometry was chosen so that diffracted intensities in the low-20 region (5-15 deg), important for phyllosilicate identification, could be detected.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-19549 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...