ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx. 20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-39701 , Annual Meeting of The Meteoritical Society; Jul 23, 2017 - Jul 28, 2017; Sante Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Amoeboid Olivine aggregates (AOAs) are irregularly shaped objects commonly observed in carbonaceous chondrites. Because they are composed of fine-grained olivine and Ca-Al-rich minerals, they are sensitive indicators for nebular process and parent body alteration of their parent bodies. Recently an AOA was found in a carbonaceous clast in polymict eucrite LEW 85300. The bulk major element composition of the clast matrix in LEW 85300 suggests a relation to CM, CO and CV chondrites, whereas bulk clast trace and major element compositions do not match any carbonaceous chondrite, suggesting they have a unique origin. Here we characterize the mineralogy of AOA in LEW 85300 and discuss the origin of the carbonaceous clasts. Results and Discussion: The AOA is located in an impact melt vein. Half of the aggregate shows recrystallization textures (euhedral pyroxene and molten metal/FeS) due to impact melting, but the remaining part preserves the original texture. The AOA is composed of olivine, FeS and Mg,Al-phyllosilicate. Individual olivine grains measure 1-8 microns, with Fe-rich rims, probably due to impact heating. Olivines in the AOA are highly forsteritic (Fo95-99), indicating that the AOA escaped thermal metamorphism [4]. Although no LIME (Low-Fe, Mn-Enriched) olivine is observed, forsterite composition and the coexistence of Mg,Al-phyllosilicate suggest that the AOA is similar to those in the Bali-type oxidized CV (CVoxB) and CR chondrites. However, it should be noted that fayalitic olivine, which commonly occurs in CVoxB AOA, is not observed in this AOA. Also, the smaller grain size (〈8 microns) of olivine suggests they may be related to CM or CO chondrites. Therefore, we cannot exclude the possibility that the AOA originated from a unique carbonaceous chondrite.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-35689 , Goldschmidt Conference 2016; Jun 26, 2016 - Jul 01, 2016; Yokohama; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...