ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-16
    Description: The morphology and dimensions of the large diameter, steep-sided, flat-topped "pancake domes" on Venus make them unlike any type of terrestrial subaerial volcano. Comparisons between images of Hawaiian seamounts and pancake domes show similarities in shapes and secondary features. The morphometry of pancake domes is closer to that of Pacific seamounts than subaerial lava domes. Considering both morphology and morphometry, seamounts seem a better analog to the pancake domes. The control of volatile exsolution by pressure on Venus and the seafloor can cause lavas to have similar viscosities and densities, although the latter will be counteracted by high buoyancy underwater. However, analogous effects of the Venusian and seafloor alone are probably not sufficient to produce similar volcanoes. Rather, Venusian lavas of various compositions may behave like basalt on the seafloor if appropriate rates and modes of extrusion and planetary thermal structure are also considered.
    Keywords: Lunar and Planetary Exploration
    Type: NASA/CR-95-207245 , NAS 1.26:207245 , Paper-95GL02662 , Geophysical Research Letters (ISSN 0094-8534); 22; 20; 2781-2784
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-15
    Description: Both subaerial and subaqueous environments have been used as analog settings for Venus volcanism. To assess the merits of this, the effects of ambient conditions on the physical properties of lava on Venus, the seafloor, and land on Earth are evaluated. Rhyolites on Venus and on the surface of Earth solidify before basalts do because of their lower eruption temperatures. Rhyolite crust is thinner than basalt crust at times less than about an hour, especially on Venus. At later times, rhyolite crust is thicker because of its lower latent heat relative to basalt. The high pressure on the seafloor and Venus inhibits the exsolution of volatiles in lavas. Vesicularity and bulk density are proportional, so that lavas of the same composition should be more dense on the seafloor and less dense on land. Because viscosity depends partly upon the fraction of unvesiculated water in a melt, basalts with the same initial volatile abundance will be least viscous on the seafloor and most viscous on land. Assuming the same preeruptive H2O contents, molten rhyolites on Venus will have viscosities approx. 10% that of rhyolites on land. Despite lower expected viscosities, under-water flows are more buoyant and should have heights like subaerial and Venusian lavas of the same composition and extrusive history. In cases where the influence of crust is insignificant, a volume of rhyolite will have a higher aspect ratio than the same volume of basalt, no matter what the environment. If flow rheology is dominated by the presence of strong crust, aspect ratios differ little among environments or between compositions. These analyses support a rhyolitic interpretation for the composition of Venusian festooned flows and a basaltic interpretation for the composition of Venusian steep-sided domes. Although ambient effects are significant, extrusion rate and eruption history must also be considered to explain analogous volcanic landforms on Earth and Venus.
    Keywords: Lunar and Planetary Exploration
    Type: NASA/CR-97-207246 , NAS 1.26:207246 , Paper-97JE00390 , Journal of Geophysical Research (ISSN 0148-0227); 102; E4; 9243-9255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...