ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Three satellites of Jupiter, seven satellites of Saturn, and five satellites of Uranus show spectroscopic evidence of H2O ice on their surfaces, although other details of their surfaces are highly diverse. The icy surfaces contain contaminants of unknown composition in varying degrees of concentration, resulting in coloration and large differences in albedo. In addition to H2O, Europa has frozen SO2, and Ganymede has O2 in the surface; in both of these cases external causes are implicated in the deposition or formation of these trace components. Variations in ice exposure across the surfaces of the satellites are measured from the spectroscopic signatures. While H2O ice occurs on the surfaces of many satellites, the range of bulk densities of these bodies shows that its contribution to their overall compositions is highly variable from one object to another.
    Keywords: Lunar and Planetary Exploration
    Type: NASA-TM-112308 , NAS 1.15:112308
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Much of the surface of Pluto consists of high-albedo regions covered to an unknown depth by Beta-N2, contaminated with CH4, CO, and other molecules. A portion of the exposed surface appears to consist of solid H2O. The remainder is covered by lower albedo material of unknown composition. The N2 ice may occur as polar caps of large extent, leaving ices and other solids of lower volatility in the equatorial regions. The low-albedo material found primarily in the equatorial regions may consist in part of solid hydrocarbons and nitriles produced from N2 and CH4 in the atmosphere or in the surface ices. Alternatively, it may arise from deposition from impacting bodies and/or the chemistry of the impact process itself. Charon's surface is probably more compositionally uniform than that of Pluto, and is covered by H2O ice with possible contaminants or exposures of other materials that are as yet unidentified. The molecular ices discovered on Pluto and Charon have been identified from near-infrared spectra obtained with Earth-based telescopes. The quantitative interpretation of those data has been achieved through the computation of synthetic spectra using the Hapke scattering theory and the optical constants of various ices observed in the laboratory. Despite limitations imposed by the availability of laboratory data on ices in various mixtures, certain specific results have been obtained. It appears that CH4 and CO are trace constituents, and that some fraction of the CH4 (and probably the CO) on Pluto is dissolved in the matrix of solid N2. Pure CH4 probably also occurs on Pluto's surface, allowing direct access to the atmosphere. Study of the nitrogen absorption band at 2.148 micrometers shows that the temperature of the N2 in the present epoch is 40 +/-2 K. The global temperature regime of Pluto can be modeled from observations of the thermal flux at far-infrared and millimeter wavelengths. The low-albedo equatorial regions must be significantly warmer than the polar regions covered by N2 (at T = 40 K) to account for the total thermal flux measured. At the present season, the diurnal skin depth of the insolation-driven thermal wave is small, and the observed mm-wave fluxes may arise from a greater depth. Alternatively, the mm-wave flux may arise from the cool, sublimation source region. The surface microstructure in the regions covered by N2 ice is likely governed by the sintering properties of this highly volatile material. The observed nitrogen infrared band strength requires that expanses of the surface be covered with cm-sized crystals of N2. Grains of H2O ice on Charon, in contrast, are probably of order 50 micrometers in size, and do not metamorphose into larger grains at a significant rate. Because of the similarities in size, density, atmosphere and surface composition between Pluto and Neptune's satellite Triton, the surface structures observed by Voyager on Triton serve as a plausible paradigm for what might be expected on Pluto. Such crater forms, tectonic structures, aeolian features, cryovolcanic structures, and sublimation-degraded topography as are eventually observed on Pluto and Charon by spacecraft will give information on their interior compositions and structures, as well as on the temperature and wind regimes over the planet's extreme seasonal cycle.
    Keywords: Lunar and Planetary Exploration
    Type: NASA-TM-112310 , NAS 1.15:112310
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Progress in extra-solar planet detection is reviewed. The following subject areas are covered: (1) the definition of a planet; (2) the weakness of planet signals; (3) direct techniques - imaging and spectral detection; and (4) indirect techniques - reflex motion and occultations.
    Keywords: ASTROPHYSICS
    Type: NAS-NRC, Planetary Sciences: American and Soviet Research; p 270-287
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-27
    Description: A new hyperluminous infrared galaxy in the Infrared Astronomy Satellite (IRAS) Faint Source Catalog is identified at a redshift of 0.93. This object has a bolometric luminosity of approximately 10(exp 13) solar luminosity, a very large ratio of infrared-to-optical luminosity, warm dust emission, a ratio of infrared-to-radio flux densities consistent with other infrared galaxies, and an optical spectrum similar to a Seyfert 2 galaxy. IRAS F15307+3552 shares these characteristics and its radio-to-optical spectral energy distribution with two other infrared galaxies, F10214+4724 and P09104+4109. Discovery of a third object with these properties defines an extreme subclass of ultraluminous galaxies powered primarily by star formation. The systematic method used to find this object begins the process of determining the space density of these most luminous examples of the infrared galaxy phenomenon.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 424; 2; p. L65-L68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The best metrology data extant are presently used to estimate the center and wing point-spread function of the HST, in order to ascertain the implications of an observational criterion according to which a faint source's discovery can occur only when the signal recorded near its image's location is sufficiently larger than would be expected in its absence. After defining the maximum star-planet flux ratio, a figure of merit Q, defined as the contrast ratio between a 'best case' planet and the scattered starlight background, is introduced and shown in the HST's case to be unfavorable for extrasolar planet detection.
    Keywords: ASTROPHYSICS
    Type: Icarus (ISSN 0019-1035); 87; 484-497
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-16
    Description: A brown dwarf star having only 20-50 times the mass of Jupiter is located below and to the left of the bright star GL 229 in this image from the Hubble Space Telescope. At the 19 light year distance to GL 229, the 7.7-arcsec separation between the star and the brown dwarf corresponds to roughly the separation between Pluto and the Sun in our Solar System. The goal of the program described in this report is to detect and characterize Earth-like planets around nearby stars where conditions suitable for life might be found. For a star like the Sun located 30 light years away, the appropriate star-planet separation would be almost 100 times closer than seen here for GL 229B.
    Keywords: Lunar and Planetary Exploration
    Type: NASA-CR-203568 , NAS 1.26:203568 , JPL-Publ-96-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...