ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 168 (1991), S. 619-630 
    ISSN: 1432-1351
    Keywords: Locust ; Vasopressin-like peptides ; Diuresis ; Extra-ocular photoreceptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The two vasopressin-like immunoreactive (VPLI) neurons of the locust, Locusta migratoria, have cell bodies in the suboesophageal ganglion and extensive arborizations throughout the CNS. One of the two peptides responsible for AVP-like immunoreactivity is a vasopressin-related peptide with putative ‘diuretic hormone’ properties. These neurons also have FLRF-like immunoreactivity, probably due to the FMRF-amide-related peptide, SchistoFLRF-amide, isolated from Schistocerca gregaria. This peptide has cardioinhibitory activity and a dual potentiation/inhibition of slow motoneuron induced muscle-twitch tension. Although haemolymph AVP-like peptide titre fluctuates under various conditions, the mechanism that regulates neurohaemal release of this peptide is not understood. Very little is known of the release of SchistoFLRF-amide. We have used intracellular recording from VPLI neurons in vivo to reveal synaptic inputs that lead to changes in their level of spiking activity, and probably, release of both the AVP-like peptides and SchistoFLRF-amide. This pair of neurosecretory cells has a major, common excitatory input whose sustained rate of activity is inversely related to light intensity; VPLI spiking activity, driven by this input, is greater in the dark than in light. This input is from a pair of descending brain interneurons. Their light-sensitivity persists after ablation of compound eyes, optic lobes and ocelli, showing them to be part of an extra-ocular photoreceptor system. Attempts to record from, and individually stain, the descending neuron have been unsuccessful, although its axon location and diameter in the circumoesophageal connective have been determined. Possible locations for its cell body have been identified; one region, close to the pars intercerebralis, is known to be photosensitive in some insects. Mechanosensory stimuli also lead to brief increases in VPLI spiking activity via the descending interneuron, though this modality rapidly habituates. We detect no changes in VPLI spiking activity that consistently correlate with the osmolality of perfusion salines; such changes might have been expected from their previously proposed role in water homeostasis. Alternative roles for VPLI cells are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 168 (1991), S. 605-617 
    ISSN: 1432-1351
    Keywords: Locust ; Neuroanatomy ; Immunohisto ; chemistry ; Vasopressin-like peptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Antiserum to arginine-vasopressin has been used to characterise the pair of vasopressin-like immunoreactive (VPLI) neurons in the locust. These neurons have cell bodies in the suboesophageal ganglion, each with a bifurcating dorsal lateral axon which gives rise to predominantly dorsal neuropilar branching in every ganglion of the ventral nerve cord. There are extensive beaded fibre plexuses in most peripheral nerves of thoracic and abdominal ganglia, but in the brain, the peripheral plexuses are reduced while neuropilar branching is more extensive, although it generally remains superficial. An array of fibres runs centripetally through the laminamedulla chiasma in the optic lobes. Lucifer Yellow or cobalt intracellular staining of single VPLI cells in the adult suboesophageal ganglion shows that all immunoreactive processes emanate from these two neurons, but an additional midline arborisation (that was only partially revealed by immunostaining) was also observed. Intracellularly staining VPLI cells in smaller larval instars, which permits dye to reach the thoracic ganglia, confirms that there is no similar region of poorly-immunoreactive midline arborisation in these ganglia. It has been previously suggested that the immunoreactive superficial fibres and peripheral plexuses in ventral cord ganglia serve a neurohaemal function, releasing the locust vasopressin-like diuretic hormone, F2. We suggest that the other major region of VPLI arborisation, the poorly immunoreactive midline fibres in the suboesophageal ganglion, could be a region where VPLI cells receive synaptic input. The function of the centripetal array of fibres within the optic lobe is still unclear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...