ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lipid deesterification Lysophospholipids  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 7 (1994), S. 303-310 
    ISSN: 1432-2145
    Keywords: Narcissus poeticus ; Papaver rhoeas Typha latifolia ; Free fatty acids ; Lipid deesterification Lysophospholipids ; Pollen storage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Declining viability of pollen during storage at 24° C in atmospheres of 40% relative humidity (RH) and 75% RH was studied, with special emphasis on lipid changes. Pollens of Papaver rhoeas and Narcissus poeticus, characterized by a high linolenic acid content, were compared with Typha latifolia pollen which has a low linolenic acid content. The rationale behind this was to answer the question of whether lipid peroxidation is involved in the rapid viability loss and reduced membrane integrity of, in particular, the unsaturated-lipid pollen types. Viability and membrane integrity degraded more rapidly at 75% RH than at 40% RH. All pollen species showed deesterification of acyl chains of lipids but no detectable peroxidation at both RH levels. Considerable amounts of lipid-soluble antioxidants were detected that did not degrade during storage. Free fatty acids and lysophospholipids were formed during storage, the effects of which on membranes are discussed. These degradation products were very prominent in the short-lived Papaver pollen. The loss of viability does coincide with phospholipid deesterification. A significant decrease of the phospholipid content occurred at 75% RH, but not at 40% RH. Based on compositional analyses of phospholipids and newly formed free fatty acids, it was concluded that the deesterification of acyl chains from the lipids occurred at random. We suggest that, due to the low water content of the pollen, free radicals rather than unspecific acyl hydrolases are involved in the deesterification process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...