ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-06-22
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in MacKenzie, S., Neveu, M., Davila, A., Lunine, J., Cable, M., Phillips-Lander, C., Eigenbrode, J., Waite, J., Craft, K., Hofgartner, J., McKay, C., Glein, C., Burton, D., Kounaves, S., Mathies, R., Vance, S., Malaska, M., Gold, R., German, C., Soderlund, K. M., Willis, P., Freissinet, C., McEwen, A. S., Brucato, J. R., de Vera, J-P. P., Hoehler, T. M., Heldmann, J. Science objectives for flagship-class mission concepts for the search for evidence of life at Enceladus. Astrobiology, 22(6), (2022): 685-712. https://doi.org/10.1089/ast.2020.2425.
    Description: Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus’ south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus’ plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.
    Description: This work was supported by grant 80NSSC20K0136 of the NASA Planetary Mission Concept Studies Program. Some of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). C.R.G. acknowledges support from the Exploring Ocean Worlds (ExOW) project (NASA Award: 80NSSC19K1427).
    Keywords: Enceladus ; Mission ; Life detection ; Habitability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The MOD (Mars Organic Detector) instrument concept consists of a sublimation apparatus for organic compound isolation connected to a microfabricated microfluidic analyzer containing a sipper, pumps and a separation channel for organic compound characterization. The target organic compounds are amino acids and polycyclic aromatic hydrocarbons (PAHs). Solid samples are placed within the sublimation apparatus and heated to release organic compounds which sublime onto a cold finger. Half of the cold finger is coated with fluorescamine. which reacts with amino acids and other primary amines to generate an intense fluorescent derivative while the other half is uncoated and is used to directly detect PAH fluorescence, A capillary sipper is then used to dissolve and sample the labeled amino acids and integrated microfabricated pumps transport the labeled amino acids to the chip for analysis. The sample is separated using capillary zone electrophoresis (CZE) together with chiral dextrins to determine amino acid composition and chirality. During the grant period, the following steps have been completed toward the development of a robust instrument and chemistry.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...