ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 58 (1995), S. 221-236 
    ISSN: 0730-2312
    Keywords: ors ; replication origin ; replication proteins ; purification ; HeLa cells ; in vitro replication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Ors (origin enriched sequence) 8 is a mammalian autonomously replicating DNA sequence previously isolated by extrusion of nascent monkey (CV-1) DNA in early S phase. A 186 bp fragment of ors 8 has been identified as the minimal sequence required for origin function, since upon its deletion the in vivo and in vitro replication activity of this ors is abolished. We have fractionated total HeLa cell extracts on a DEAE-Sephadex and then on a Affi-Gel Heparin column and identified a protein fraction that interacts with the 186 bp fragment of ors 8 in a specific manner. The same fraction is able to support the in vitro replication of ors 8 plasmid. The ors binding activity (OBA) present in this fraction sediments at approximately 150 kDa in a glycerol gradient. Band-shift elution experiments of the specific protein-DNA complex detect by silver-staining predominantly two protein bands with molecular weights of 146 kDa and 154 kDa, respectively. The fraction containing the OBA is also enriched for polymerases α and δ, topoisomerase II, and replication protein A, (RP-A).
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: ors ; replication origin ; minimal origin ; deletion analysis ; episomal replication ; in vitro replication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have generated a panel of deletion mutants of ors8 (483 bp), a mammalian autonomously replicating DNA sequence, previously isolated by extrusion of nascent monkey (CV-1) DNA from replication bubbles active at the onset of S phase. The deletion mutants were tested for replication function by the DpnI resistance assay, in vivo, after transfection into HeLa cells, and in vitro. An internal fragment of 186-bp that is required for autonomous replication function of ors8 was identified. This fragment, when subcloned into pBR322 and similarly tested, was capable of autonomous replication in vivo and in vitro. The 186-bp fragment contains several repeated sequence motifs, such as the ATTA and ATTTAT motifs, occurring three and five times, respectively, the sequences TAGG and TAGA, occurring three and seven times, respectively, two 5′-ATT-3′ repeats, a 44-bp imperfect inverted repeat (IR) sequence, and an imperfect consensus binding element for the transcription factor Oct-1. A measurable sequence-directed DNA curvature was also detected, coinciding with the AT-rich regions of the 186-bp fragment.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 444-451 
    ISSN: 0730-2312
    Keywords: in vitro DNA replication ; mammalian ; doxorubicin ; araC ; progesterone ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: DNA replication machinery is an important target for chemotherapeutic drugs. We have used an in vitro system to study the effect of drugs on mammalian DNA replication, either by direct interaction with the DNA structure or with replication proteins and machinery. The anthracycline doxorubicin (Dox) showed a dose-dependent inhibitory effect on DNA replication, whether incubated with HeLa cell extracts or with DNA and nucleotides. Earliest-labeled fragment analysis revealed that inhibition of replication began within the origin-containing fragment in both control and Dox-containing reactions in vitro. AraC, a nucleoside analog, had no significant effect on DNA synthesis. In contrast, araCTP was able to inhibit DNA replication in vitro. Since metabolism is diminished in this in vitro system, the degree of phosphorylation of araC was apparently low. Progesterone showed an increase in nucleotide incorporation (sensitive to BuPdGTP inhibition of replication-specific polymerases α and δ) after preincubation with HeLa cell extracts, although progesterone receptors were not detectable in the HeLa cell extracts. In addition, we observed an inhibition in DNA replication when progesterone was preincubated with DNA and nucleotides. These results suggest that progesterone may have a mechanism of action that is different from any known to be mediated through progesterone receptors. In conclusion, these results indicate that this mammalian in vitro replication system will be useful for the study of mechanisms and design of therapeutic drugs that inhibit mammalian DNA replication. © 1996 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0730-2312
    Keywords: deletion mutants ; ors12 ; replication activity ; mammalian origin ; autonomous replication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have generated a panel of deletion mutants of ors12 (812-bp), a mammalian origin of DNA replication previously isolated by nascent strand extrusion from early replicating African Green monkey (CV-1) DNA. The deletion mutants were tested for their replication activity in vivo by the bromodeoxyuridine substitution assay, after transfection into HeLa cells, and in vitro by the DpnI resistance assay, using extracts from HeLa cells. We identified a 215-bp internal fragment as essential for the autonomous replication activity of ors12. When subcloned into the vector pML2 and similarly tested, this subfragment was capable of autonomous replication in vivo and in vitro. Several repeated sequence motifs are present in this 215-bp fragment, such as TGGG(A) and G(A)AG (repeated four times each); TTTC, AGG, and CTTA (repeated 3 times each); the motifs CACACA and CTCTCT, and two imperfect inverted repeats, 22 and 16 bp long, respectively. The overall sequence of the 215-bp fragment is G/C-rich (50.2%), by comparison to the 186-bp (33.5% G/C-rich) minimal sequence required for the autonomous replication activity of ors8, another functional ors that was similarly isolated and characterized. J. Cell. Biochem. 66:87-97, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 309-327 
    ISSN: 0730-2312
    Keywords: in vitro replication ; ors8 ; Oct-1 transcription factor ; POU domain ; mammalian autonomously replicating DNA sequence ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A 186-base pair fragment of ors8, a mammalian autonomously replicating DNA sequence isolated by extrusion of nascent monkey DNA in early S phase, has previously been identified as the minimal sequence required for replication function in vitro and in vivo. This 186-base pair fragment contains, among other sequence characteristics, an imperfect consensus binding site for the ubiquitous transcription factor Oct-1. We have investigated the role of Oct-1 protein in the in vitro replication of this mammalian origin. Depletion of the endogenous Oct-1 protein, by inclusion of an oligonucleotide comprising the Oct-1 binding site, inhibited the in vitro replication of p186 to approximately 15-20% of the control, whereas a mutated Oct-1 and a nonspecific oligonucleotide had no effect. Furthermore, immunodepletion of the Oct-1 protein from the HeLa cell extracts by addition of an anti-POU antibody to the in vitro replication reactioninhibited p186 replication to 25% of control levels. This inhibition of replication could be partially reversed to 50-65% of control levels, a two- to threefold increase, upon the addition of exogenous Oct-1 POU domain protein.Site-directed mutagenesis of the octamer binding site in p186 resulted in a mutant clone, p186-MutOct, which abolished Oct-1 binding but was still able to replicate as efficiently as the wild-type p186. The results suggest that Oct-1 protein is an enhancing component in the in vitro replication of p186 but that its effect on replication is not caused through direct binding to the octamer motif. J. Cell. Biochem. 68:309-327, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 323-329 
    ISSN: 0730-2312
    Keywords: steroids ; DNA replication ; carcinogenesis ; proliferation ; cell-free system ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: There is now convincing evidence associating estrogens with an increased risk of some cancers. However, the absence of a complete correlation between estrogen receptor binding and the biological activity of these estrogens has suggested the possibility of other mechanisms of action. The effect on DNA replication of several hormones that are putatively involved in breast cancer was tested at a physiological concentration. The studies were conducted in a HeLa cell-free system by using a plasmid containing a specific mammalian origin of replication (DHFR oriβ〈0R) as template DNA. A series of related steroids produced an entire range of activity from enhancement to inhibition of in vitro DNA replication. These studies indicate a new possible target, which may help to better understand the effect of these hormones in breast cancer. Furthermore, the results show that this in vitro DNA replication system provides an evaluative assay for the effects of compounds on hormone-responsive cancers independent of some hormone receptors. J. Cell. Biochem. 70:323-329, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 1-22 
    ISSN: 0730-2312
    Keywords: inverted repeats ; cruciform DNA ; secondary structure ; DNA replication ; cruciform binding proteins ; structure-specific recognition ; protein-DNA interactions ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Inverted repeats occur nonrandomly in the DNA of most organisms. Stem-loops and cruciforms can form from inverted repeats. Such structures have been detected in pro- and eukaryotes. They may affect the supercoiling degree of the DNA, the positioning of nucleosomes, the formation of other secondary structures of DNA, or directly interact with proteins. Inverted repeats, stem-loops, and cruciforms are present at the replication origins of phage, plasmids, mitochondria, eukaryotic viruses, and mammalian cells. Experiments with anti-cruciform antibodies suggest that formation and stabilization of cruciforms at particular mammalian origins may be associated with initiation of DNA replication. Many proteins have been shown to interact with cruciforms, recognizing features like DNA crossovers, four-way junctions, and curved/bent DNA of specific angles. A human cruciform binding protein (CBP) displays a novel type of interaction with cruciforms and may be linked to initiation of DNA replication. © 1996 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...