ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 163 (1995), S. 312-320 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have investigated the promoter element(s) required by the cell cycle regulated FO108 human histone H4 gene for control of gene expression during adipocyte proliferation and differentiation. Stable 3T3L1 cell lines were established that express fusion genes in which the histone H4 promoter is joined to chloramphenicol acetyltransferase (cat) as a reporter gene. Expression of the H4CAT fusion genes was monitored in proliferating and confluent 3T3L1 preadipocytes and in differentiating 3T3L1 adipocytes. The results indicate that the H4 cell cycle element (CCE), which mediates S phase-specific stimulation of H4 gene transcription, is not required for transcriptional regulation during differentiation. Instead, a minimal H4 promoter (nucleotides -46 to -11) is sufficient to mediate the complex transcriptional response of H4 gene expression observed during the process of adipocyte differentiation of 3T3L1 cells. In addition, the data suggest that down-regulation of histone gene expression during cellular differentiation may be mediated by passive inactivation of the promoter due to loss of positive regulatory factor(s). © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This study examines the mechanism by which TGF-β1, an important mediator of cell growth and differentiation, blocks the differentiation of normal rat diploid fetal osteoblasts in vitro. We have established that the inability for pre-osteoblasts to differentiate is associated with changes in the expression of cell growth, matrix forming, and bone related genes. These include histone, jun B, c-fos, collagen, fibronectin, osteocalcin, alkaline phosphatase, and osteopontin. Morphologically, the TGF-β1-treated osteoblasts exhibit an elongated, spread shape as opposed to the characteristic cuboidal appearance during the early stages of growth. This is followed by a decrease in the number of bone nodules formed and the amount of calcium deposition. These effects on differentiation can occur without dramatic changes in cell growth if TGF-β1 is given for a short time early in the proliferative phase. However, continuous exposure to TGF-β1 leads to a bifunctional growth response from a negative effect during the proliferative phase to a positive growth effect during the later matrix maturation and mineralization phases of the osteoblast developmental sequence. Extracellular matrix genes, fibronectin, osteopontin and α1(I) collagen, are altered in their expression pattern which may provide an aberrant matrix environment for mineralization and osteoblast maturation and potentiate the TGF-β1 response throughout the course of osteoblast differentiation. The initiation of a TGF-β1 effect on cell growth and differentiation is restricted to the proliferative phase of the culture before the cells express the mature osteoblastic phenotype. Second passage cells that are accelerated to differentiate by the addition of dexamethasone or by seeding cultures at a high density are refractory to TGF-β1. These in vitro results indicate that TGF-β1 exerts irreversible effects at a specific stage of osteoblast phenotype development resulting in a potent inhibition of osteoblast differentiation at concentrations from 0.1 ng/ml. © 1994 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cell cycle and growth control of the DNA binding and transactivation functions of regulatory factors provides a direct mechanism by which cells may coordinate transcription of a multitude of genes in proliferating cells. The promoters of human DNA replication dependent histone H4, H3, and H1 genes interact with at least seven distinct proteins. One of these proteins is a proliferation-specific nuclear factor, HiNF-D, that interacts with a key cis-regulatory element (H4-Site II; 41 bp) present in H4 genes. Here we describe binding sites for HiNF-D in the promoters of H3 and H1 genes using cross-competition, deletion analysis, and methylation interference assays, and we show that HiNF-D recognizes intricate arrangements of at least two sequence elements (CA- and AG-motifs). These recognition motifs are irregularly dispersed and distantly positioned in the proximal promoters (200 bp) of both the H3 and H1 genes. In all cases, these motifs either overlap or are in close proximity to other established transcriptional elements, including ATF and CCAAT sequences. Although HiNF-D can interact with low affinity to a core recognition domain, auxiliary elements in both the distal and proximal portions of each promoter cooperatively enhance HiNF-D binding. Thus, HiNF-D appears to bridge remote regulatory regions, which may juxtapose additional trans-activating proteins interacting within histone gene promoters. Consistent with observations in many cell culture systems, the interactions of HiNF-D with the H4, H3, and H1 promoters are modulated in parallel during the cessation of proliferation in both osteosarcoma cells and normal diploid osteoblasts, and these events occur in conjunction with concerted changes in histone gene expression. Thus, HiNF-D represents a candidate participant in coordinating transcriptional control of several histone gene classes. © 1994 wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cell cycle control of histone H4 gene transcription is mediated by the multipartite promoter domain H4-Site II, which supports transcriptional activation at the G1/S phase transition and modulates basal H4 gene transcription. Proliferation-specific transcription is determined by the integrated activities of three distinct promoter factors interacting with H4-Site II: the interferon regulatory factor IRF-2 (synonymous with HiNF-M), HiNF-D (a complex between the homeodomain protein CDP-cut and the cell cycle mediators CDC2, cyclin A and pRB), as well as HiNF-P/H4TF-2. However, the contribution of HiNF-D to the enhancement and/or suppression of H4 gene transcription at specific cell cycle stages remains to be established. We used a panel of synchronized HeLa S3 cell lines containing stably integrated H4 promoter/CAT reporter gene constructs with mutations in H4-Site II. The temporal regulation of CAT mRNA accumulation under the control of the H4 promoter was analyzed by RNase protection analysis. Our main finding is that mutation of the HiNF-D/CDP-cut binding site alters the timing of histone gene activation during the cell cycle. Furthermore, our data indicate that HiNF-P/H4TF-2 may functionally compensate for HiNF-M/IRF-2 at Site II to regulate histone H4 gene transcription in HeLa S3 cervical carcinoma cells during early S phase. We postulate that HiNF-D (CDP-cut/cyclin A/CDC2/pRB containing complex) promotes HiNF-M/IRF-2 (and/or HiNF-P/H4TF-2) dependent histone H4 gene activation at the G1/S phase transition and attenuates H4 gene transcription at later cell cycle stages. The mechanistic division in the gene regulatory functions of the three H4-Site II binding proteins may ensure that histone H4 gene expression is stringently coupled with the onset of S phase in response to growth factor/cytokine-induced cell cycle progression. J. Cell. Physiol. 177:453-464, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 44 (1990), S. 1-17 
    ISSN: 0730-2312
    Keywords: histone genes ; gene structure ; gene expression ; histone mRNA ; rat liver ; rat testis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A 6.86 kb rat genomic DNA fragment containing the testis-specific histone H1t gene and the histone H4t gene has been sequenced. S1-nuclease protection analyses of total cellular RNA from rat liver and testis showed that histone H1t mRNA was present only in testis. Examination of various highly enriched populations of rat testis cell types revealed that H1t mRNA was found exclusively in a fraction enriched in pachytene spermatocytes. When protein, DNA interactions within the proximal promoter region of the histone H1t gene were examined by electrophoretic mobility shift assays, only minor differences were found in mobility shift patterns of the H1t promoter in assays comparing binding of nuclear proteins from pachytene spermatocytes and early spermatids. However, major differences in binding were observed upon comparing nuclear proteins from rat pachytene spermatocytes to liver. Comparison of binding patterns of rat testis, rat hepatoma H4 cells, HeLa cells, and COS-1 cells also revealed dramatic differences. Transcriptional activity of the histone H1t promoter was examined by measuring H1t promoted chloramphenicol acetyltransferase (CAT) mRNA levels in transient experession assays in transfected rat hepatoma H4 cells, HeLa cells, and COS-1 cells. These assays revealed that the histone H1t promoted CAT gene functioned poorly in HeLa cells and COS-1 cells compared to expression with the parent SV40 promoted vector pSV2CAT. The H1t promoted CAT gene apparently did not work at all in transfected rat hepatoma H4 cells, which is consistent with testis germinal cell specific expression of the histone H1t gene.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: nucleus ; gene expression ; cell growth ; osteoblast ; nucleosome ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: During the past several years it has become increasingly evident that the three-dimensional organization of the nucleus plays a critical role in transcriptional control. The principal theme of this prospect will be the contribution of nuclear structure to the regulation of gene expression as functionally related to development and maintenance of the osteoblast phenotype during establishment of bone tissue-like organization. The contributions of nuclear structure as it regulates and is regulated by the progressive developmental expression of cell growth and bone cell related genes will be examined. We will consider signalling mechanisms that integrate the complex and interdependent responsiveness to physiological mediators of osteoblast proliferation and differentiation. The focus will be on the involvement of the nuclear matrix, chromatin structure, and nucleosome organization in transcriptional control of cell growth and bone cell related genes. Findings are presented which are consistent with involvement of nuclear structure in gene regulatory mechanisms which support osteoblast differentiation by addressing four principal questions: (1) Does the representation of nuclear matrix proteins reflect the developmental stage-specific requirements for modifications in transcription during osteoblast differentiation? (2) Are developmental stage-specific transcription factors components of nuclear matrix proteins? (3) Can the nuclear matrix facilitate interrelationships between physiological regulatory signals that control transcription and the integration of activities of multiple promoter regulatory elements? (4) Are alterations in gene expression and cell phenotypic properties in transformed osteoblasts and osteosarcoma cells reflected by modifications in nuclear matrix proteins? There is a striking representation of nuclear matrix proteins unique to cells, tissues as well as developmental stages of differentiation, and tissue organization. Together with selective association of regulatory molecules with the nuclear matrix in a growth and differentiation-specific manner, there is a potential for application of nuclear matrix proteins in tumor diagnosis, assessment of tumor progression, and prognosis of therapies where properties of the transformed state of cells is modified. It is realistic to consider the utilization of nuclear matrix proteins for targeting regions of cell nuclei and specific genomic domains on the basis of developmental phenotypic properties or tissue pathology. © 1994 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: rat bone transcription ; rat bone transcription factors ; osteopetrotic bone transcription ; osteocalcin transcription ; collagen transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transcriptional regulation of gene expression in vivo in bone, associated with normal development or skeletal disorders, to date, has not been studied. We report the successful isolation of nuclei that are transcriptionally active from normal and osteopetrotic rat bone. Transcription rates of cell growth and bone-related genes (including histone H4, c-fos, c-jun, TGFβ1, β2 macroglobulin, collagen, fibronectin, osteocalcin, osteopontin, and tartrate resistent acid phosphatase) change as a function of calvarial development from birth to 6 weeks and are selectively modified in osteopetrotic animals. Additionally, nuclei isolated from intact bone yield promoter binding factors. Bone nuclei, which transcribe faithfully and contain the normal complement of nuclear protein factors, offer a powerful approach for investigating in vivo gene regulation in skeletal development and pathology. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0730-2312
    Keywords: osteosarcoma cells ; osteocalcin gene ; osteoblasts ; vitamin D response element (VDRE) ; transcription factor complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vitamin D responsive transcription of the bone-specific osteocalcin gene differs markedly in osteosarcoma cells and normal diploid osteoblasts. In osteoblasts the osteocalcin gene is transcribed, and upregulated by Vitamin D, only in post-proliferative cells, but in osteosarcoma cells expression is constitutive. This distinction in transcriptional regulation of the osteocalcin gene correlates with striking differences in the relative representation of two principal Vitamin D-dependent protein/DNA complexes designated V1 and V2 at the Vitamin D responsive element in the osteocalcin promoter. Formation of both complexes is Vitamin D dependent and they contain the Vitamin D receptor as well as an RXR related protein. Pore size exclusion and sedimentation velocity analyses suggest that the V1 and V2 complexes represent oligomeric protein assemblies (respectively, tetramers and trimers), and reflect primarily DNA-directed association of the monomeric protein components at the osteocalcin Vitamin D responsive element. UV crosslinking and methylation interference analyses of the V1 and V2 complexes at the osteocalcin Vitamin D responsive element indicate differences in protein/DNA recognition. For example, the V1 complex interacts with both steroid half-elements, whereas the V2 complex appears to recognize the proximal half-element. Our findings suggest variations in protein/protein and protein/DNA interactions of the VDR and RXR related complexes V1 and V2 at the osteocalcin Vitamin D responsive element that reflect unique properties of the osteosarcoma and normal diploid osteoblast phenotype. © 1994 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: osteoblasts ; osteosarcoma ; osteocalcin ; cell cyle ; alkaline phosphatase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Establishing reuglatory mechanisms that mediate proliferation of osteoblasts while restricting expression of genes asociated with mature bone cell phenotypic properties to post-proliferative cells is fundamental to understanding skeletal development. To gain insight into relationships between growth control and the developmental expression of genes during osteblast differentiation, we have examined expression of three classes of genes during the cell cycle of normal diploid rat calvarial-derived osteoblasts and rat osteosarcoma cells (ROS 17/2.8): cell cycle and growth-related to the biosynthesis, organization, and mineralization of the bone extracellular matrix (e.g., alkaline phosphatase, collagen l, osteocalcin, and osteopontin). In normal diploid osteoblasts as well as in osteosarcoma cells we found that histone genes, required for cell progression, are selectively expressed during S phase. All other genes studied were constitutively expressed both at the transcriptional and posttranscriptional levels. Alkaline phosphatase, an integral membrane protein in both osteoblasts and osteosarcoma cells, exhibited only minimal changes in activity during the osteoblast and osteosarcoma cell cycles. Our findings clearly indicate that despite the loss of normal proliferation-differentiation interrelationships in osteosarcoma cells, cell cycle regulatin or constitutive expression of growth and phenotypic genes is maintained.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: osteocalcin ; homeodomain protein ; osteoblasts ; transcriptional regulation ; bone specific ; developmental ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteocalcin is a 6 kD tissue-specific calcium binding protein associated with the bone extracellular matrix. The osteocalcin gene is developmentally expressed in postproliferative rat osteoblasts with regulation at least in part at the transcriptional level. Multiple, basal promoter and enhancer elements which control transcriptional activity in response to physiological mediators, including steroid hormones, have been identified in the modularly organized osteocalcin gene promoter. The osteocalcin box (OC box) is a highly conserved basal regulatory element residing between nucleotides -99 and -76 of the proximal promoter. We recently established by in vivo competition analysis that protein interactions at the CCAAT motif, which is the central core of the rat OC box, are required for support of basal transcription [Heinrichs et al. J Cell Biochem 53:240-250, 1993]. In this study, by the combined utilization of electrophoretic mobility shift analysis, UV cross linking, and DNA affinity chromatography, we have identified a protein that binds to the rat OC box. Results are presented that support involvement of the OC box-binding protein in regulating selective expression of the osteocalcin gene during differentiation of the rat osteoblast phenotype and suggest that this protein is tissue restricted.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...