ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (2)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 10 (1988), S. 255-262 
    ISSN: 0886-1544
    Keywords: regulation of organelle transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Allen Video-enhanced constrast/differential interference constrast (AVEC-DIC) microscopy was used in conjunction with video intensification immunofluorescence microscopy to demonstrate that organelles and vesicle (particles) can move in either direction along microtubular linear elements in fibroblasts [Hayden et al., 1983]. Since it is not possible to determine the number of microtubules making up a linear element with light microscopy alone, AVEC-DIC microscopy was used in conjunction with whole-mount electron microscopy to show bidirectional transport along a single microtubule [Hayden and Allen, 1984]. These studies demonstrate that the structural polarity of the microtubule does not determine the direction of particle motion, and since dynein is an asymetric molecule, a simple microtubule-dynein-particle hypothesis cannot explain bidirectional transport along a single microtubule.Very little is known about regulation of particle transport in most cell types. Human embryonic lung fibroblasts grown on glass coverslips were serum-deprived for 24 hours and re-fed with serumless medium; the particle translocations/5 minutes were then determined The cells were then re-fed with either serumless medium, serum-containing medium, or serumless medium containing some bioactive factor, and the particle translocations/5 minutes were again determined for the same cells. Medium containing 10% fetal bovine serum inhibited particle translocation by 51.8%. Of the bioactive factors tested, only vasopressin produced a significant reduction in particle translocations (38%). This suggests that protein kinase C or calcium/calmodulin kinase could be involved in regulating particle transport.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 3 (1983), S. 1-19 
    ISSN: 0886-1544
    Keywords: cytoplasmic transport ; Saltation ; microtubules ; keratocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We report the first direct demonstration that the cytoplasmic transport of organelles and vesicles (collectively called particles) takes place along microtubules. Living keratocytes from the corneal stroma of the frog, Rana pipiens, were observed with Allen video-enhanced constrast, differential interference constrast (AVEC-DIC) microscopy [Allen et al, 1981]. In sufficiently thin regions of these cells a network of linear elements was visible. When particles were observed in motion, they always moved along these linear elements. The linear elements remained intact and in focus on the microscope when lysed in a cell lysis solution that stabilized microtubules. Preparations were then fixed in formaldehyde, washed with phosphate-buffered saline (PBS), incubated with rabbit antitubulin, washed with PBS, stained with rhodamine-conjugated goat antirabbit, and washed with PBS. The extracted cells continued to remain in place and in focus on the microscope throughout these procedures. The same cells were then observed using epifluorescence optics and a silicon-intensified target (SIT) video camera. A network of fluorescent linear elements was seen to correspond in number, form, and position to the linear elements seen in the live AVEC-DIC image. Taken together, the AVEC-DIC and fluorescence microscopy observations prove that the linear elements along which particles move are microtubules (MTLEs). The observed particle speeds, pause times, and distances moved varied widely, even for the same particle on the same microtubule. Particles were also observed to switch from one microtubule to another as they were transported. The polarity of the microtubules did not seem to affect the particle direction, since particles were observed to move in both directions on the same MTLE. When not in motion these particles behaved as if anchored to the microtubules since they showed negligible Brownian motion. Finally, it was observed that an elongate particle could move onto two intersecting linear elements such that it was deformed into an inverted “Y” shape. This indicates that there may be more than a single site of attachment between the force generator and the particle.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...