ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (2)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 122 (1985), S. 290-298 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Substrate regulation of System A transport activity in rat H4 hepatoma cells is described. The uptake of several amino acids was tested in the presence of system-specific inhibitors. System A activity was increased in a RNA- and protein synthesis-dependent manner by amino acid deprivation of the cells (adaptive regulation), whereas transport by Systems ASC, N, y+, and L was unaffected. Unlike human fibroblasts, the H4 cells did not require serum to exhibit the depression of System A. At cell densities between 88 × 103 and 180 × 103 cells/cm2, the degree of adaptive regulation was inversely related to cell density. Both transport of AIB and adaptive regulation of System A were nearly abolished if either K+ or Li+ was substituted for Na+ in the medium. The presence of cycloheximide or tunicamycin blocked further increases in starvation-induced activity within 1 hr of addition, suggesting the involvement of a plasma membrane glycoprotein. In contrast, if the medium was supplemented with actinomycin after the stimulation of System A had begun, the activity continued to increase for an additional 2 hr before being slowed by the inhibitor. The contributions of trans-inhibition and repression to the amino acid-induced decay of System A activity were estimated for several representative amino acids. In general, the System A activity in normal rat hepatocytes was much less sensitive to trans-inhibition than the corresponding activity in H4 hepatoma cells. The half-life values for the amino acid-dependent decay of System A ranged from 0.5 to 2.0 hr.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 129 (1986), S. 321-328 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The transport of amino acids by normal rat hepatocytes and several hepatoma cell lines has been examined for inactivation by various protein-modifying reagents, including the sulfhydryl-preferring reagents N-ethylmaleimide (NEM) and p-chloromercuribenzene sulfonate (PCMBS). Uptake of 2-aminoisobutyric acid (AIB), a specific probe for hepatic System A-mediated transport, was equally sensitive to inhibition by the organic mercurial PCMBS in each of the cell types tested. In contrast, the sensitivity of System A to inactivation by NEM was substantially different among the five cell types. Normal hepatocytes showed the greatest sensitivity, while the hepatoma cells varied in their responsiveness from moderate to no inhibition. PCMBS inactivated greater than 85% of the System A activity in rat H4 hepatoma cells within 10 min (t1/2 = 3 min). The inhibition by PCMBS was rapidly reversed by treatment of the cells with dithiothreitol. Amino acids showing a high affinity for System A protected the transport system from inactivation, whereas non-substrates produced little or no protection. Amino acid-dependent protection was stereospecific and system-specific. L-norleucine competitively inhibited AIB uptake (Ki = 1.9 ± 0.1 mM) in H4 cells and also protected System A from PCMBS-dependent inactivation (half-maximal protection occurred at an amino acid concentration of 0.6 + 0.1 mM). N-bromosuccinimide was completely ineffective as an inhibitor of System A activity in hepatocytes, whereas treatment of H4 rat hepatoma cells with this reagent resulted in greater than 95% inhibition.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...