ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (2)
  • 1990-1994  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 147 (1991), S. 242-247 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Mouse L929 cells were exposed to the nonionic detergent Brij 58. As has been shown in some other cell types, protein leaked from Brij 58 exposed cells only after a lag phase. In the current study we have extended the observations of the kinetics of protein efflux using cultured L cells subjected to treatment with buffers containing Brij 58. The results show that while the cells become permeable essentially at first exposure to the detergent, proteins do not scape immediately. This lag in efflux is at least partly dependent on the concentration of detergent such that a greater lag is seen in cells exposed to the lowest concentrations of Brij. Data are presented that are most readily interpreted as protein leakage having occured fairly rapidly from individual cells and that show that the time course of protein efflux results, to a large extent, from different sensitivities of individual cells to the detergent. The perrneabilized suspension cells consist of only two types, whereas the conversion of cells from one type to the other occurs through the loss of protein to the permeabilization medium. Only two bands are seen in continuous density gradients and there is a conversion of the more dense type to the less dense with longer exposure to detergent. Moreover, the less dense cells contained about half of the protein per cell as the bottom banding cells, and the proteins of the more dense cells appear to be the sum of those released into the permeabilization medium plus those found in the less dense cells.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 142 (1990), S. 386-391 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Mouse L-929 cells were subjected to increasing concentrations of sorbitol, which remove cell water and reduce volume osmotically. The rate of lactate production from glucose was significantly higher in osmotically perturbed cells than in controls, both in monolayers and in suspensions. L cells can apparently use sorbitol as a glycolytic substrate; however, studies using other solutes (trehalose and sucrose) and permeabilized cells showed that the major effect of scrbitol on glycolysis in intact cells is mediated through a reduction in cell water content and volume. It is possible to explain some of these results by an increase in the chemical potentials of dissolved components of the glycolytic pathway caused by water loss; however, the relationship between water loss and glycolytic rate increase in not a simple linear one, suggesting that the situation is more complex than would result merely from increased concentrations of pathway components. Whatever the complete explanation might be, these studies show that glycolysis continues in an orderly fashion in cells that have lost about 85% of their original water content, suggesting that the operation of this pathway is not unduly sensitive to events taking place in the bulk aqueous phase.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...