ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The present study was designed to validate our noninvasive ultrasonic technique (pulse phase locked loop: PPLL) for measuring intracranial pressure (ICP) waveforms. The technique is based upon detecting skull movements which are known to occur in conjunction with altered intracranial pressure. In bench model studies, PPLL output was highly correlated with changes in the distance between a transducer and a reflecting target (R2 = 0.977). In cadaver studies, transcranial distance was measured while pulsations of ICP (amplitudes of zero to 10 mmHg) were generated by rhythmic injections of saline. Frequency analyses (fast Fourier transformation) clearly demonstrate the correspondence between the PPLL output and ICP pulse cycles. Although theoretically there is a slight possibility that changes in the PPLL output are caused by changes in the ultrasonic velocity of brain tissue, the decreased amplitudes of the PPLL output as the external compression of the head was increased indicates that the PPLL output represents substantial skull movement associated with altered ICP. In conclusion, the ultrasound device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. Our technique makes it possible to analyze ICP waveforms noninvasively and will be helpful for understanding intracranial compliance and cerebrovascular circulation.
    Keywords: Life Sciences (General)
    Type: Acta neurochirurgica. Supplementum (ISSN 0065-1419); Volume 71; 66-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Intracranial pressure (ICP) dynamics are important for understanding adjustments to altered gravity. Previous flight observations document significant facial edema during exposure to microgravity, which suggests that ICP is elevated during microgravity. However, there are no experimental results obtained during space flight, primarily due to the invasiveness of currently available techniques. We have developed and refined a noninvasive technique to measure intracranial pressure noninvasively. The technique is based upon detecting skull movements of a few micrometers in association with altered intracranial pressure. We reported that the PPLL technique has enough sensitivity to detect changes in cranial distance associated with the pulsation of ICP in cadavera. In normal operations, however, we place a transducer on the scalp. Thus, we cannot rule out the possibility that the PPLL technique picks up cutaneous pulsation. The purpose of the present study was therefore to show that the PPLL technique has enough sensitivity to detect changes in cranial distance associated with cardiac cycles in vivo.
    Keywords: Life Sciences (General)
    Type: Uchu seibutsu kagaku (ISSN 0914-9201); 12; 3; 270-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...