ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Nitric oxide is an unstable free radical that serves as a novel messenger molecule in the central nervous system (CNS). In order to understand the interplay between classic and novel chemical communication systems in vestibular pathways, the staining obtained using a monoclonal antibody directed against L-citrulline was compared with the labeling observed using more traditional markers for the presence of nitric oxide. Brainstem tissue from adult rats was processed for immunocytochemistry employing a monoclonal antibody directed against L-citrulline, a polyclonal antiserum against neuronal nitric oxide synthase, and/or NADPH-diaphorase histochemistry. Our findings demonstrate that L-citrulline can be fixed in situ by vascular perfusion, and can be visualized in fixed CNS tissue sections by immunocytochemistry. Further, the same vestibular regions and cell types are labeled by NADPH-diaphorase histochemistry, by the neuronal nitric oxide synthase antiserum, and by our anti-L-citrulline antibody. Clusters of L-citrulline-immunoreactive neurons are present in subregions of the vestibular nuclei, including the caudal portion of the inferior vestibular nucleus, the magnocellular portion of the medial vestibular nucleus, and the large cells in the ventral tier of the lateral vestibular nucleus. NADPH-diaphorase histochemical staining of these neurons clearly demonstrated their multipolar, fusiform and globular somata and long varicose dendritic processes. These results provide support for the suggestion that nitric oxide serves key roles in both vestibulo-autonomic and vestibulo-spinal pathways.
    Keywords: Life Sciences (General)
    Type: Annals of the New York Academy of Sciences (ISSN 0077-8923); 942; 65-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.
    Keywords: Life Sciences (General)
    Type: Neuroscience (ISSN 0306-4522); 114; 1; 111-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: Annals of the New York Academy of Sciences (ISSN 0077-8923); 656; 933-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: L-Baclofen-sensitive GABAB binding sites in the medial vestibular nucleus (MVN) were identified immunocytochemically and visualized ultrastructurally in L-baclofen-preinjected rats and monkeys, using a mouse monoclonal antibody with specificity for the p-chlorophenyl moiety of baclofen. Saline-preinjected animals showed no immunostain. In drug-injected animals, there was evidence for both pre- and postsynaptic GABAergic inhibition in MVN mediated by GABAB receptors. These neural elements could be utilized in control of velocity storage in the vestibulo-ocular reflex.
    Keywords: Life Sciences (General)
    Type: Brain research (ISSN 0006-8993); 581; 1; 175-80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Time series from biological system often displays fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". The output from most biological systems is probably the result of both the internal dynamics of the systems, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.
    Keywords: Life Sciences (General)
    Type: Methods of information in medicine (ISSN 0026-1270); 36; 5-Apr; 294-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: Time series from biological system often display fluctuations in the measured variables. Much effort has been directed at determining whether this variability reflects deterministic chaos, or whether it is merely "noise". Despite this effort, it has been difficult to establish the presence of chaos in time series from biological sytems. The output from a biological system is probably the result of both its internal dynamics, and the input to the system from the surroundings. This implies that the system should be viewed as a mixed system with both stochastic and deterministic components. We present a method that appears to be useful in deciding whether determinism is present in a time series, and if this determinism has chaotic attributes, i.e., a positive characteristic exponent that leads to sensitivity to initial conditions. The method relies on fitting a nonlinear autoregressive model to the time series followed by an estimation of the characteristic exponents of the model over the observed probability distribution of states for the system. The method is tested by computer simulations, and applied to heart rate variability data.
    Keywords: Life Sciences (General)
    Type: Physica D. Nonlinear phenomena (ISSN 0167-2789); 99; 471-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: Advances in space biology and medicine (ISSN 1569-2574); 10; 105-64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...