ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.
    Keywords: Life Sciences (General)
    Type: Analytical chemistry (ISSN 0003-2700); Volume 71; 18; 4000-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil, suggesting the absence of a widely distributed Martian biota. However, it is now known that key organic compounds important to biology, such as amino acids, carboxylic acids and nucleobases, would likely have been missed by the Viking GCMS instruments. In this study, a Mars soil analogue that was inoculated with approx. 10 billion Escherichia coli cells was heated at 500 C under Martian ambient pressure to release volatile organic compounds from the sample. The pyrolysis products were then analyzed for amino acids and nucleobases using high performance liquid chromatography (HPLC) and GCMS. Our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments. Upcoming strategies for Mars exploration will require in-situ analyses by instruments that can assess whether any organic compounds, especially those that might be associated with life, are present in Martian surface samples.
    Keywords: Life Sciences (General)
    Type: Goldschmidt Geochemistry Conference; Jun 05, 2004 - Jun 11, 2004; Copenhagen; Denmark
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth's prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines'. These compounds play a major role in terrestrial biochemistry and are integral components of proteins, DNA and RNA. In this study we developed a new extraction technique using sublimation in order to isolate purines and pyrimidines from Murchison2, which is cleaner and more time efficient that traditional methods3. Several purines including adenine, guanine, hypoxanthine and xanthine were positively identified by high performance liquid chromatography and ultraviolet absorption detection in our Murchison extracts. The purines detected in Murchison do not correlate with the distribution of nucleobases found in geological environments on Earth4. Moreover, the abundance of extraterrestrial amino acids and the low level of terrestrial amino acid contaminants found in Murchison', support the idea that the purines in t h s meteorite are extraterrestrial in origin.
    Keywords: Life Sciences (General)
    Type: 35th Lunar and Planetary Science Conference; Mar 15, 2004 - Mar 19, 2004; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.
    Keywords: Life Sciences (General)
    Type: GSFC-E-DAA-TN22004 , Geobiology; 12; 1; 1-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...