ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.
    Keywords: Life Sciences (General)
    Type: Journal of biological rhythms (ISSN 0748-7304); Volume 17; 1; 4-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The biological basis of preferences for morning or evening activity patterns ("early birds" and "night owls") has been hypothesized but has remained elusive. The authors reported that, compared with evening types, the circadian pacemaker of morning types was entrained to an earlier hour with respect to both clock time and wake time. The present study explores a chronobiological mechanism by which the biological clock of morning types may be set to an earlier hour. Intrinsic period, a fundamental property of the circadian system, was measured in a month-long inpatient study. A subset of participants also had their circadian phase assessed. Participants completed a morningness-eveningness questionnaire before study. Circadian period was correlated with morningness-eveningness, circadian phase, and wake time, demonstrating that a fundamental property of the circadian pacemaker is correlated with the behavioral trait of morningness-eveningness.
    Keywords: Life Sciences (General)
    Type: Behavioral neuroscience (ISSN 0735-7044); 115; 4; 895-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.
    Keywords: Life Sciences (General)
    Type: Journal of biological rhythms (ISSN 0748-7304); 15; 6; 524-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Many elderly people complain of disturbed sleep patterns but there is not evidence that the need to sleep decreases with age; it seems rather that the timing and consolidation of sleep change. We tried to find out whether there is a concurrent change in the output of the circadian pacemaker with age. The phase and amplitude of the pacemaker's output were assessed by continuous measurement of the core body temperature during 40 h of sustained wakefulness under constant behavioural and environmental conditions. 27 young men (18-31 years) were compared with 21 older people (65-85 years; 11 men, 10 women); all were healthy and without sleep complaints. The mean amplitude of the endogenous circadian temperature oscillation (ECA) was 40% greater in young men than in the older group. Older men had a lower mean temperature ECA than older women. The minimum of the endogenous phase of the circadian temperature oscillation (ECP) occurred 1 h 52 min earlier in the older than in the young group. Customary bedtimes and waketimes were also earlier in the older group, as was their daily alertness peak. There was a close correlation between habitual waketime and temperature ECP in young men, which may lose precision with age, especially among women. These findings provide evidence for systematic age-related changes in the output of the human circadian pacemaker. We suggest that these changes may underlie the common complaints of sleep disturbance among elderly people. These changes could reflect the observed age-related deterioration of the hypothalamic nuclei that drive mammalian circadian rhythms.
    Keywords: Life Sciences (General)
    Type: Lancet (ISSN 0140-6736); 340; 8825; 933-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Regulation of circadian period in humans was thought to differ from that of other species, with the period of the activity rhythm reported to range from 13 to 65 hours (median 25.2 hours) and the period of the body temperature rhythm reported to average 25 hours in adulthood, and to shorten with age. However, those observations were based on studies of humans exposed to light levels sufficient to confound circadian period estimation. Precise estimation of the periods of the endogenous circadian rhythms of melatonin, core body temperature, and cortisol in healthy young and older individuals living in carefully controlled lighting conditions has now revealed that the intrinsic period of the human circadian pacemaker averages 24.18 hours in both age groups, with a tight distribution consistent with other species. These findings have important implications for understanding the pathophysiology of disrupted sleep in older people.
    Keywords: Life Sciences (General)
    Type: Science (ISSN 0036-8075); 284; 5423; 2177-81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: BACKGROUND: Morningness-eveningness refers to interindividual differences in preferred timing of behavior (i.e., bed and wake times). Older people have earlier wake times and rate themselves as more morning-like than young adults. It has been reported that the phase of circadian rhythms is earlier in morning-types than in evening types, and that older people have earlier phases than young adults. These changes in phase have been considered to be the chronobiological basis of differences in preferred bed and wake times and age-related changes therein. Whether such differences in phase are associated with changes in the phase relationship between endogenous circadian rhythms and the sleep-wake cycle has not been investigated previously. METHODS: We investigated the association between circadian phase, the phase relationship between the sleep-wake cycle and circadian rhythms, and morningness-eveningness, and their interaction with aging. In this circadian rhythm study, 68 young and 40 older subjects participated. RESULTS: Among the young subjects, the phase of the melatonin and core temperature rhythms occurred earlier in morning than in evening types and the interval between circadian phase and usual wake time was longer in morning types. Thus, while evening types woke at a later clock hour than morning types, morning types actually woke at a later circadian phase. Comparing young and older morning types we found that older morning types had an earlier circadian phase and a shorter phase-wake time interval. The shorter phase-waketime interval in older "morning types" is opposite to the change associated with morningness in young people, and is more similar to young evening types. CONCLUSIONS: These findings demonstrate an association between circadian phase, the relationship between the sleep-wake cycle and circadian phase, and morningness-eveningness in young adults. Furthermore, they demonstrate that age-related changes in phase angle cannot be attributed fully to an age-related shift toward morningness. These findings have important implications for understanding individual preferences in sleep-wake timing and age-related changes in the timing of sleep.
    Keywords: Life Sciences (General)
    Type: Journal of investigative medicine : the official publication of the American Federation for Clinical Research (ISSN 1081-5589); 47; 3; 141-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The light-entrainable circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus regulates the timing and consolidation of sleep by generating a paradoxical rhythm of sleep propensity; the circadian drive for wakefulness peaks at the end of the day spent awake, ie close to the onset of melatonin secretion at 21.00-22.00 h and the circadian drive for sleep crests shortly before habitual waking-up time. With advancing age, ie after early adulthood, sleep consolidation declines, and time of awakening and the rhythms of body temperature, plasma melatonin and cortisol shift to an earlier clock hour. The variability of the phase relationship between the sleep-wake cycle and circadian rhythms increases, and in old age sleep is more susceptible to internal arousing stimuli associated with circadian misalignment. The propensity to awaken from sleep advances relative to the body temperature nadir in older people, a change that is opposite to the phase delay of awakening relative to internal circadian rhythms associated with morningness in young people. Age-related changes do not appear to be associated with a shortening of the circadian period or a reduction of the circadian drive for wake maintenance. These changes may be related to changes in the sleep process itself, such as reductions in slow-wave sleep and sleep spindles as well as a reduced strength of the circadian signal promoting sleep in the early morning hours. Putative mediators and modulators of circadian sleep regulation are discussed.
    Keywords: Life Sciences (General)
    Type: Annals of medicine (ISSN 0785-3890); 31; 2; 130-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: PURPOSE: Numerous reports that secretion of the putative sleep-promoting hormone melatonin declines with age have led to suggestions that melatonin replacement therapy be used to treat sleep problems in older patients. We sought to reassess whether the endogenous circadian rhythm of plasma melatonin concentration changes with age in healthy drug-free adults. METHODS: We analyzed the amplitude of plasma melatonin profiles during a constant routine in 34 healthy drug-free older subjects (20 women and 14 men, aged 65 to 81 years) and compared them with 98 healthy drug-free young men (aged 18 to 30 years). RESULTS: We could detect no significant difference between a healthy and drug-free group of older men and women as compared to one of young men in the endogenous circadian amplitude of the plasma melatonin rhythm, as described by mean 24-hour average melatonin concentration (70 pmol/liter vs 73 pmol/liter, P = 0.97), or the duration (9.3 hours vs 9.1 hours, P = 0.43), mean (162 pmol/liter vs 161 pmol/liter, P = 0.63), or integrated area (85,800 pmol x min/liter vs 86,700 pmol x min/liter, P = 0.66) of the nocturnal peak of plasma melatonin. CONCLUSION: These results do not support the hypothesis that reduction of plasma melatonin concentration is a general characteristic of healthy aging. Should melatonin replacement therapy or melatonin supplementation prove to be clinically useful, we recommend that an assessment of endogenous melatonin be carried out before such treatment is used in older patients.
    Keywords: Life Sciences (General)
    Type: The American journal of medicine (ISSN 0002-9343); 107; 5; 432-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The daily rhythm of melatonin influences multiple physiological measures, including sleep tendency, circadian rhythms, and reproductive function in seasonally breeding mammals. The biological signal for photoperiodic changes in seasonally breeding mammals is a change in the duration of melatonin secretion, which in a natural environment reflects the different durations of daylight across the year, with longer nights leading to a longer duration of melatonin secretion. These seasonal changes in the duration of melatonin secretion do not simply reflect the known acute suppression of melatonin secretion by ocular light exposure, but also represent long-term changes in the endogenous nocturnal melatonin episode that persist in constant conditions. As the eyes of totally blind individuals do not transmit ocular light information, we hypothesized that the duration of the melatonin secretory episode in blind subjects would be longer than those in sighted individuals, who are exposed to light for all their waking hours in an urban environment. We assessed the melatonin secretory profile during constant posture, dim light conditions in 17 blind and 157 sighted adults, all of whom were healthy and using no prescription or nonprescription medications. The duration of melatonin secretion was not significantly different between blind and sighted individuals. Healthy blind individuals after years without ocular light exposure do not have a longer duration of melatonin secretion than healthy sighted individuals.
    Keywords: Life Sciences (General)
    Type: The Journal of clinical endocrinology and metabolism (ISSN 0021-972X); 86; 7; 3166-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The contribution of the circadian timing system to the age-related advance of sleep-wake timing was investigated in two experiments. In a constant routine protocol, we found that the average wake time and endogenous circadian phase of 44 older subjects were earlier than that of 101 young men. However, the earlier circadian phase of the older subjects actually occurred later relative to their habitual wake time than it did in young men. These results indicate that an age-related advance of circadian phase cannot fully account for the high prevalence of early morning awakening in healthy older people. In a second study, 13 older subjects and 10 young men were scheduled to a 28-h day, such that they were scheduled to sleep at many circadian phases. Self-reported awakening from scheduled sleep episodes and cognitive throughput during the second half of the wake episode varied markedly as a function of circadian phase in both groups. The rising phase of both rhythms was advanced in the older subjects, suggesting an age-related change in the circadian regulation of sleep-wake propensity. We hypothesize that under entrained conditions, these age-related changes in the relationship between circadian phase and wake time are likely associated with self-selected light exposure at an earlier circadian phase. This earlier exposure to light could account for the earlier clock hour to which the endogenous circadian pacemaker is entrained in older people and thereby further increase their propensity to awaken at an even earlier time.
    Keywords: Life Sciences (General)
    Type: The American journal of physiology (ISSN 0002-9513); 275; 5 Pt 2; R1478-87
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...