ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.
    Keywords: Life Sciences (General)
    Type: Applied and environmental microbiology (ISSN 0099-2240); Volume 66; 8; 3230-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: We have developed a new photochemical model of Titan's atmosphere which includes all the important compounds and reactions in spherical geometry from the surface to 1240 km. Compared to the previous model of Yung et al. (1984), the most significant recent change in the reactions used is the updated methane dissociation scheme (Mordaunt et al. 1993). Moreover, the transfer of the solar radiation in the atmosphere and the photolysis rates have been calculated by using a Monte Carlo code. Finally, the eddy diffusion coefficient profile is adjusted in order to fit the mean vertical distribution of HCN retrieved from millimeter groundbased observations of Tanguy et al. (1990); using new values for the boundary flux of atomic nitrogen (Strobel et al. 1992). We have run the model in both steady-state and diurnal modes, with 62 species involved in 249 reactions. There is little difference between diurnal and steady-state results. Overall our results are in a closer agreement with the abundances inferred from the Voyager infrared measurements at the equator than the Yung et al. results. We find that the catalytic scheme for H recombination invoked by Yung et al. only slightly improves the model results and we conclude that this scheme is not essential to fit observations.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Icarus (ISSN 0019-1035); 113; 1; p. 2-26
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: The Licancabur volcano (6017 m) hosts the highest and one of the least explored lakes in the world in its summit crater. It is located 22 deg.50 min. South / 67 deg.53 min. West at the boundary of Chile and Bolivia in the High-Andes. In a freezing environment, the lake located in volcano-tectonic environment combines low-oxygen, low atmospheric pressure due to altitude, and high-UV radiation (see table). However, its bottom water temperature remains above 0 C year-round. These conditions make Licancabur a unique analog to Martian paleolakes considered high-priority sites for the search for life on Mars.
    Keywords: Life Sciences (General)
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Badwater is the lowest, saltiest, and hottest, place in North America. This extreme environment is 86 meters (282 feet) below sea level surrounded by four mountain ranges. Due to the geographical location Badwater does not receive moisture from the prevailing winds, this intern results in a hot, arid, and salty environment. Despite these extreme living conditions, microbes manage to flourish within the salt flat. The salt acts as an insulator making life just beneath the surface more comfortable In this paper, we compare the microbial population versus oxygen concentration; and the importance of and the role of oxygen in metabolic functions by these thermo-haliophiles. Furthermore a model of the oxygen profile will also provide an insight to the oxygen cycle in salty environments. This research has implications for the limits of life on Earth and Mars. Recent results from the MER rovers show that water on Mars was very salty. Measuring the oxygen profile in these salty environments on Earth provides a framework within which potential life on Mars can be evaluated. The use of an oxygen profile could also be used as a search criteria for life.
    Keywords: Life Sciences (General)
    Type: Workshop on Oxygen in the Terrestrial Planets; 60; LPI-Contrib-1203
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The vertical zonation of the Antarctic cryptoendolithic community appears to form in response to the light regime in the habitat. However, because of the structure of the habitat, the light regime is difficult to study directly. Therefore, a mathematical model of the light regime was constructed, which was used to estimate the total photon flux in different zones of the community. Maximum fluxes range from about 150 micrometers photons m-2 s-1 at the upper boundary of the community to about 0.1 micrometer photons m-2 s-1. Estimates of the annual productivity in the community indicate that the lowest zone of the community is light limited, with the maximal annual carbon uptake equivalent to less than the carbon content of one algal (Hemichloris) cell.
    Keywords: Life Sciences (General)
    Type: Microbial ecology (ISSN 0095-3628); 16; 271-89
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: In the Antarctic cold desert, cryptoendolithic microorganisms live under the surface of porous sandstone rocks. During the austral summer, the environment of the near-surface rock layers colonized by organisms is characterized by two kinds of temperature oscillations, both occurring across the freezing point. Low-frequency (diurnal) and large-amplitude (up to about 20 degrees C) oscillations on the sunlit surface of rocks result in a daily freeze-thaw cycle. This is a result of the diurnal changes in the sun altitude and angle with respect to the rock surface. The biological effect of this oscillation is the regulation of the onset and cessation of metabolic activity. The high-frequency (few minutes) oscillations occur only under certain weather conditions (sunny days with light winds) and are superimposed on the low-frequency oscillations. They are caused by the cooling effect of wind gusts on rock surfaces that are much warmer than ambient air temperatures. High-frequency oscillations result in a rapid freeze-thaw cycle on the surface, which, however, does not reach the microbial zone. These high-frequency freeze-thaw oscillations are probably the cause of the abiotic nature of the rock surface. Both oscillations seem to have an effect on rock weathering.
    Keywords: Life Sciences (General)
    Type: Polar biology (ISSN 0722-4060); 4; 19-25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The application of radiocarbon dating is extended to include systems that are slowly exchanging carbon with the atmosphere. Simple formulae are derived that relate the true age and the exchange rate of carbon to the apparent radiocarbon age. A radiocarbon age determination does not give a unique true age and exchange rate but determines a locus of values bounded by a minimum age and a minimum exchange rate. It is found that for radiocarbon ages as large as 10,000 years it is necessary to correct for the anthropogenic radiocarbon produced in the atmosphere by nuclear weapons testing. A one-term exponential approximation, with an e-folding time of 14.43 years, is used to model this effect and is shown to be accurate to within 3 percent for exchange time constants of 100 years and greater. The approach developed here is not specific to radiocarbon and can be applied to other radioisotopes in open systems.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 91; 3836-384
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...