ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life Sciences (General)  (1)
  • 1995-1999  (1)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: Transpiration, a major component of total evaporation from vegetated surfaces, is an unavoidable consequence of photosynthetic carbon fixation. Because of limiting soil moisture and competition for solar radiation plants invest most of their fixed carbon into structural and hydraulic functions (roots and stems) and solar radiation absorption (leaves). These investments permit individuals to overshadow competitors and provide for transport of water from the soil to the leaves where photosynthesis and transpiration occur. Often low soil moisture or high evaporative demand limit the supply of water to leaves reducing photosynthesis and thus transpiration. The absorption of solar radiation for photosynthesis and dissipation of this energy via radiation, heat, mass and momentum fluxes represents the link between photosynthesis and climate. Recognition of these relationships has led to the development of hydro/energy balance models that are based on the physiological ecology of photosynthesis. We discuss an approach to study vegetation-climate interactions using photosynthesis-centric models embedded in a GCM. The rate at which a vegetated area transpires and photosynthesizes is determined by the physiological state of the vegetation, its amount and its type. The latter two are specified from global satellite data collected since 1982. Climate simulations have been carried out to study how this simulated climate system responds to changes in radiative forcing, physiological capacity, atmospheric CO2, vegetation type and variable vegetation cover observed from satellites during the 1980's. Results from these studies reveal significant feedbacks between the vegetation activity and climate. For example, vegetation cover and physiological activity increases cause the total latent heat flux and precipitation to increase while mean and maximum air temperatures decrease. The reverse occurs if cover or activity'decreases. In general climate response of a particular region was dominated by local processes but we also find evidence that plausible climate-vegetation scenarios lead to changes in global atmospheric circulation and strong non-local influences in some cases.
    Keywords: Life Sciences (General)
    Type: AGU Fall Meeting; Dec 06, 1998 - Dec 10, 1998; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...