ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 11 (1979), S. 339-347 
    ISSN: 0091-7419
    Keywords: switch hypothesis ; cilia ; motility ; vanadate ; calcium ; dynein ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Lateral (L) cilia of freshwater mussel (Margaritana margaritifera and Elliptio complanatus) gills can be arrested in one of two unique positions. When treated with 12.5 mM CaCl2 and 10-5 M A23187 they arrest in a “hands up” position, ie, pointing frontally. When treated with approximately 10 mM vanadate (V) they arrest in a “hands down” position, ie, pointing abfrontally. L-cilia treated with 12.5 mM CaCl2 and 1 mM NaN3 also arrest in a “hands down” position; substitution of 20 mM KC1 and 1 mM NaN3 causes cilia to move rapidly and simultaneously to a “hands up” position.The observations suggest that there are two switching mechanisms for activation of active sliding in ciliary beat one at the end of the recovery stroke and the other at the end of the effective stroke; the first is inhibited by calcium and the second by vanadate or azide. This is consistent with a model of ciliary beating where microtubule doublet numbers 1, 2, 3, and 4 are active during the effective stroke while microtubule doublets numbers 6, 7, 8, and 9 are passive, and the converse occurs during the recovery stroke.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 12 (1979), S. 165-175 
    ISSN: 0091-7419
    Keywords: microvilli ; Malpighian tubule ; cytoskeleton ; actin ; cell motility ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The mitochondria in the lower Malpighian tubule of the insect Rhodnius prolixus can be stimulated by feeding in vivo and by 5-hydroxytryptamine in vitro, to move from a position below the cell cortex to one inside the apical microvilli. During and following their movement into the microvilli, the mitochondria are intimately associated with the microfilaments of the cell cortex and microvillar core bundle. Bridges approximately 14 nm in length and 4 nm in diameter are observed connecting the microvillar microfilaments to the outer mitochondrial membrane and microvillar plasma membrane. Depolymerization of all visible microtubules with colchicine does not inhibit 5-HT-stimulated mitochondrial movement. On the other hand, treatment with cytochalasin B does block mitochondrial movement, suggesting that microfilaments play a role in the mitochondrial motility. We have labeled the microvillar microfilaments, which are 6 nm in diameter, with heavy meromyosin, which supports the contention that they contain actin. A model of the mechanism of mitochondrial movement is presented in which mitochondria slide into position in the microvilli along actin-containing microfilaments in a manner analogous to the sliding actin-myosin model of skeletal muscle.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...