ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Late Holocene  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA1209, doi:10.1029/2010PA002000.
    Description: A molecular organic geochemical proxy (TEX86) for sea surface temperature (SST) is compared with a foraminifera-based SST proxy (Mg/Ca) in a decadal-resolution marine sedimentary record spanning the last 1000 years from the Gulf of Mexico. We assess the relative strengths of the organic and inorganic paleoceanographic techniques for reconstructing high-resolution SST variability during recent climate events, including the Little Ice Age (LIA) and the Medieval Warm Period (MWP). SST estimates based on the molecular organic proxy TEX86 show a similar magnitude and pattern of SST variability to foraminiferal Mg/Ca-SST estimates but with some important differences. For instance, both proxies show a cooling (1°C–2°C) of Gulf of Mexico SSTs during the LIA. During the MWP, however, Mg/Ca-SSTs are similar to near-modern SSTs, while TEX86 indicates SSTs that were cooler than modern. Using the respective SST calibrations for each proxy results in TEX86-SST estimates that are 2°C–4°C warmer than Mg/Ca-SST throughout the 1000 year record. We interpret the TEX86-SST as a summer-weighted SST signal from the upper mixed layer, whereas the Mg/Ca-SST better reflects the mean annual SST. Downcore differences in the SST estimates between the two proxies (ΔT = TEX86 − Mg/Ca) are interpreted in the context of varying seasonality and/or changing water column temperature gradients.
    Description: This work was supported, in part, by the National Science Foundation under grants OCE‐0318361 and OCE‐0903017.
    Keywords: TEX86 ; Little Ice Age ; Late Holocene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...