ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8868
    Keywords: Lambert Glacier/Amery Ice Shelf ; geostatistical evaluation ; Seasat ; Geosat ; grounding line ; elevation changes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Mathematics
    Notes: Abstract The Antarctic Ice Sheet plays a major role in the global system, and the large ice streams discharging into the circumpolar sea represent its gateways to the world's oceans. Satellite radar altimeter data provide an opportunity for mapping surface elevation at kilometer-resolution with meter-accuracy. Geostatistical methods have been developed for the analysis of these data. Applications to Seasat data and data from the Geosat Exact Repeat Mission indicate that the grounding line of Lambert Glacier/Amery Ice Shelf, the largest ice stream in East Antarctica, has advanced 10–12 km between 1978 and 1987–89. The objectives of this paper are to explore possibilities and limitations of satellite-altimetry-based mapping to capture changes for shorter time windows and for smaller areas, and to investigate some methodological aspects of the data analysis. We establish that one season of radar altimeter data is sufficient for constructing a map. This allows study of interannual variation and is the key for a time-series analysis approach to study changes in ice streams. Maps of the lower Lambert Glacier and the entire Amery Ice Shelf are presented for austral winters 1978, 1987, 1988, and 1989. As a first step toward understanding the dynamics of the ice-stream/ice-shelf system, elevation changes are calculated for grounded ice, the grounding zone, and floating ice. In the absence of (sufficient) surface gravity control for the Lambert Glacier/Amery Ice Shelf area, altimetry-based maps may facilitate improvement of geoid models as they provide constraints on the terrain correction in the inverse gravimetric problem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...