ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lagrangian methods  (1)
  • 2015-2019  (1)
Collection
Years
  • 2015-2019  (1)
Year
  • 1
    Publication Date: 2023-02-21
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(8), (2019): 5313-5335, doi:10.1029/2019JC015014.
    Description: The Lagrangian method—where current location and intensity are determined by tracking the movement of flow along its path—is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid‐20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice‐free oceans and begin to construct basin‐scale, and eventually global‐scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
    Description: The authors extend their thanks to Xiaobiao Xu for valuable comments on the first draft of this manuscript. A. B. (WHOI), H. F., M. S. L., N. F., and K. D. were supported by Overturning in the Subpolar North Atlantic Program grants OCE‐1259618, OCE‐1259013, and OCE‐1259102 from the U.S. National Science Foundation. S. Z. was supported by the Climate Program Office of the National Oceanic and Atmospheric Administration under award NA16OAR4310168. M. L. was supported through the MOVE project, funded by NOAA's Global Ocean Monitoring and Observing Program under award NA15OAR4320071. A. B. (GEOMAR) and S. R. received funding from the Cluster of Excellence 80 “The Future Ocean” within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments (grant CP1412) and by the German Federal Ministry of Education and Research (BMBF) for the SPACES projects AGULHAS (grant 03F0750A) and CASISAC (grant 03F0796A). No new data are reported in this project. The data mentioned in the text may be found in repositories cited in each previously published paper cited in this review manuscript.
    Keywords: Floats ; Drifters ; Lagrangian methods ; AMOC ; Atlantic Ocean ; Numerical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...