ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (13)
Collection
Keywords
Years
  • 1
    Publication Date: 2013-08-31
    Description: Researchers derived a quantitative relationship between the effectiveness of an atmospheric greenhouse and internal heat flow in producing the morphological differences between earlier and later Martian terrains. The derivation is based on relationships previously derived by other researchers. The reasoning may be stated as follows: the CO2 mean residence time in the Martian atmosphere is almost certainly much shorter than the total time span over which early climate differences are thought to have been sustained. Therefore, recycling of previously degassed CO2 quickly becomes more important than the ongoing supply of juvenile CO2. If so, then the atmospheric CO2 pressure, and thereby the surface temperature, may be approximated mathematically as a function of the total degassed CO2 in the atmosphere plus buried material and the ratio of the atmospheric and regolith mean residence times. The latter ratio can also be expressed as a function of heat flow. Hence, it follows that the surface temperature may be expressed as a function of heat flow and the total amount of available CO2. However, the depth to the water table can simultaneously be expressed as a function of heat flow and the surface temperature (the boundary condition). Therefore, for any given values of total available CO2 and regolith conductivity, there exist coupled independent equations which relate heat flow, surface temperature, and the depth to the water table. This means we can now derive simultaneous values of surface temperature and the depth of the water table for any value of the heat flow. The derived relationship is used to evaluate the relative importance of the atmospheric greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow, and to assess the absolute importance of each of the values of the heat flow which are thought to be reasonable on independent geophysical grounds.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1990; p 203-205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: For most estimates of available regolith and initial degassed CO(sub 2) inventories, it appears that any initial inventory must have been lost to space or incorporated into carbonates. Most estimates of the total available degassed CO(sub 2) inventory are only marginally sufficient to allow for a major early greenhouse effect. It is suggested that the requirements for greenhouse warming to produce old dessicated terrain would be greatly lessened if groundwater brines rather than rainfall were involved and if a higher internal gradient were involved to raise the water (brine) table, leading to more frequent sapping.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., MECA Symposium on Mars: Evolution of its Climate and Atmosphere; p 123-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Papers Presented to the Workshop on the Evolution of the Martian Atmosphere; p 24-25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Erosion of the Martian surface by the flow of liquid water has apparently taken place at different times and locations on the planet. Many attempts were made to explain the valley networks by invoking a strong atmospheric CO2/H2O greenhouse early in the history of the planet. It was assumed that the large amounts of CO2 necessary to cause the greenhouse would have disappeared due to carbonate formation. Carbonates have yet to be positively identified. Volcanism has occurred throughout much of the history of Mars. Presumably gases such as SO2 were released along with CO2 and H2O. Estimates of amounts and rates with which SO2 were released into the Martian atmosphere, and how this would effect the global climate were made. Studies are continuing on the effects of SO2 and other volcanic gases on Martian climatic history.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., MEVTV Workshop on Nature and Composition of Surface Units on Mars; p 101-102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: The conditions under which the valley networks on the ancient cratered terrain on Mars formed are still highly debated within the scientific community. While liquid water was almost certainly involved, the exact mechanism of formation is uncertain. The networks most resemble terrestrial sapping channels, although some systems exhibit a runoff-dominated morphology. The major question in the formation of these networks is what, if anything, do they imply about early Martian climate? There are typically two major theories advanced to explain the presence of these networks. The first is that higher internal regolith temperatures, associated with a much higher heat flow 3.8 b.y. ago, would cause ground water to be closer to the surface than at present. Just how close to the surface ground water would have to exist in order to form these valley networks has recently been questioned. The second major theory is that early Mars had a much thicker atmosphere than at present, and an enhanced atmospheric greenhouse may have increased surface temperatures to near the freezing point of water. While recent calculations indicate that CO2 alone could not have produced the needed warming, the presence of other greenhouse gases may have contributed to surface warming.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Workshop on Early Mars: How Warm and How Wet?, Part 1; p 20-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Abundant martian brines would have important implication for current theories of volatile migration on Mars, since, although the presence of metastable brines is quite plausible, any brine in the reasonably near-surface should be completely depleted on a timescale short in relation to the age of Mars. It is important to determine whether brines exist in the martian subsurface, for the current paradigm for understanding martian volatile regime requires substantial alteration if they are found to exist. It is determined, however, that the prospect for detection of a subsurface brine via atmospheric water vapor measurements is marginal. Four reasons are given for this conclusion.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., MECA Workshop on Atmospheric H2O Observations of Earth and Mars. Physical Processes, Measurements and Interpretations; p 87-90
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Several alternative models were proposed for the origin and mode of formation of channels and valley networks on Martian volcanoes, notably Hecates Tholus, Ceraunius Tholus, and Alba Patera. Early interpretations of Mariner 9 and Viking images suggested that these features on Alba were lava channels, while those on Ceraunius Tholus were interpreted as fluvial or volcanic debris channels. Subsequent mapping of Tyrrehna Patera and Hecate Tholus has suggested that pyroclastic activity may have characterized eruptions on these volcanoes, and that at least for Hecates the channels were probably formed by fluvial erosion of unconsolidated ash deposits on the flanks of the volcano. As part of a continuing program to better understand the eruptive history of the young volcanic centers on Mars, numerous channels were identified on the flanks of Alba Patera that resemble the channels on Hecates. As a result, the possibility is being explored that some of the small channels on the flanks of Alba Patera may be fluvial in origin and potentail water sources and modes of formation are being explored.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1986; p 303-304
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: Researchers reexamined radiative transfer models of early Mars that were advanced to show the existance of a greenhouse effect. These models were reexamined with regard to the effect that regolith adsorption may have had. It is argued that while the precipitation of carbonates has probably been an important process during Mars history, the rates at which this process could have taken place under early Mars conditions would have dropped sharply once liquid water was fairly scarce. Furthermore, conditions under which liquid water was available may have involved efficient recycling of carbonate so that steady state conditions rather than irreversible CO2 removal prevailed. In contrast, the growth of regolith surface area demands corresponding and predictable CO2 removal from the atmosphere-cap system and is fully capable of terminating any enhanced temperature regime on early Mars in the absence of any other effects.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1986; p 161-162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-25
    Description: A model for H2O distribution and migration on Mars was formulated which takes into account: (1) thermal variations at all depths in the regolith due to variations in obliquity, eccentricity and the solar constant; (2) variations in atmospheric PH2O caused by corresponding changes in polar surface insolation; and (3) the finite kinetics of H2O migration in both the regolith and atmosphere. Results suggest that regolith H2O transport rates are more strongly influenced by polar-controlled atmospheric PH2O variations than variations in pore gas PH2O brought about by thermal variations at the buried ice interface. The configuration of the ice interface as a function of assumed soil parameter and time is derived. Withdrawal of ice proceeds to various depths at latitudes less than 50 deg and is accompanied by filling of regolith pores at latitudes greater than 50 deg and transfer of H2O to the polar cap. The transfer has a somewhat oscillatory character, but only less than 1g/sq cm is shifted into and out the regolith during each obliquity cycle. It is concluded that this process combined with periodic thermal cycles played a major role in development of the fretted terrain, deflationary features in general, patterned ground, the north polar cap and the layered terrain.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington Repts. of Planetary Geol. and Geophys. Program, 1984; p 337
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: Radiative equilibrium temperature calculations for Mars are presented, using the model of Kuhn et al. (1978). The maximum amount of ozone measured was 57 microns over the polar hood during winter. Results indicate that, although a minor constituent in the Martian atmosphere, ozone may play a significant role in controlling the rate of carbon dioxide deposition and thus the atmospheric pressure.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research; 84; Dec. 30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...